Skip to main content

Analysis of PINK1 and CaMKII Substrates Using Mass Spectrometry-Based Proteomics

  • Protocol
  • First Online:
Analysis of Post-Translational Modifications and Proteolysis in Neuroscience

Part of the book series: Neuromethods ((NM,volume 114))

  • 761 Accesses

Abstract

Mass spectrometry is a powerful tool for protein phosphorylation analysis. Collision-induced dissociation (CID) is a widely applied fragmentation method. Complementary fragmentation techniques such as electron transfer dissociation (ETD) and higher-energy C-trap dissociation (HCD) enhance the accurate elucidation of phosphorylation sites. Here we present proteomic approaches used for identifying phosphorylation sites of in vitro-phosphorylated neuroligin-1 (NL-1) and for identifying PINK1 substrates from outer mitochondrial membrane proteins. Technical details on how to identify phosphorylation sites using CID, ETD, and HCD fragmentation are described, including sample preparation, in-gel and in-solution protein digestion, peptide separation, and data acquisition.

Supported by the National Institute of Neurological Disorders and Stroke Intramural Research Program

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manning G et al (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934

    Article  CAS  PubMed  Google Scholar 

  2. Yamashita M, Fenn JB (1984) Electrospray ion-source—another variation on the free-jet theme. J Phys Chem 88(20):4451–4459

    Article  CAS  Google Scholar 

  3. Hunt DF et al (1986) Protein sequencing by tandem mass-spectrometry. Proc Natl Acad Sci U S A 83(17):6233–6237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mcluckey SA et al (1991) Ion spray liquid-chromatography ion trap mass-spectrometry determination of biomolecules. Anal Chem 63(4):375–383

    Article  CAS  Google Scholar 

  5. Biemann K (1992) Mass-spectrometry of peptides and proteins. Annu Rev Biochem 61:977–1010

    Article  CAS  PubMed  Google Scholar 

  6. Arnott D, Shabanowitz J, Hunt DF (1993) Mass-spectrometry of proteins and peptides—sensitive and accurate mass measurement and sequence-analysis. Clin Chem 39(9):2005–2010

    CAS  PubMed  Google Scholar 

  7. Eng JK, Mccormack AL, Yates JR (1994) An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989

    Article  CAS  PubMed  Google Scholar 

  8. Perkins DN et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  CAS  PubMed  Google Scholar 

  9. McLachlin DT, Chait BT (2001) Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr Opin Chem Biol 5(5):591–602

    Article  CAS  PubMed  Google Scholar 

  10. Mann M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268

    Article  CAS  PubMed  Google Scholar 

  11. Olsen JV et al (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4(9):709–712

    Article  CAS  PubMed  Google Scholar 

  12. Nagaraj N et al (2010) Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. J Proteome Res 9(12):6786–6794

    Article  CAS  PubMed  Google Scholar 

  13. Frese CK et al (2011) Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-orbitrap velos. J Proteome Res 10(5):2377–2388

    Article  CAS  PubMed  Google Scholar 

  14. Jedrychowski MP et al (2011) Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics 10(12):M111.009910

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shen YF et al (2011) Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods. J Proteome Res 10(9):3929–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xia Y, Liang XR, McLuckey SA (2006) Ion trap versus low-energy beam-type collision-induced dissociation of protonated ubiquitin ions. Anal Chem 78(4):1218–1227

    Article  CAS  PubMed  Google Scholar 

  17. Dongre AR et al (1996) Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: evidence for the mobile proton model. J Am Chem Soc 118(35):8365–8374

    Article  CAS  Google Scholar 

  18. Huang YY et al (2005) Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Anal Chem 77(18):5800–5813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sleno L, Volmer DA (2004) Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39(10):1091–1112

    Article  CAS  PubMed  Google Scholar 

  20. Boersema PJ, Mohammed S, Heck AJR (2009) Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom 44(6):861–878

    Article  CAS  PubMed  Google Scholar 

  21. Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120(13):3265–3266

    Article  CAS  Google Scholar 

  22. Syka JEP et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Good DM et al (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6(11):1942–1951

    Article  CAS  PubMed  Google Scholar 

  24. Molina H et al (2008) Comprehensive comparison of collision induced dissociation and electron transfer dissociation. Anal Chem 80(13):4825–4835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bemben MA et al (2014) CaMKII phosphorylation of neuroligin-1 regulates excitatory synapses. Nat Neurosci 17(1):56–64

    Article  CAS  PubMed  Google Scholar 

  26. Kane LA et al (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205(2):143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N. Nature. 2014 Jun 5;510(7503):162–6. doi:10.1038/nature13392. Epub 2014 Jun 4.

  28. Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM. Biochem J. 2014 May 15;460(1):127–39. doi:10.1042/BJ20140334

  29. Ichtchenko K et al (1995) Neuroligin-1—a splice site-specific ligand for beta-neurexins. Cell 81(3):435–443

    Article  CAS  PubMed  Google Scholar 

  30. Iida J et al (2004) Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin. Mol Cell Neurosci 27(4):497–508

    Article  CAS  PubMed  Google Scholar 

  31. Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bemben MA, Shipman SL, Nicoll RA, Roche KW. Trends Neurosci. 2015 Jul 21. pii: S0166-2236(15)00149-6. doi:10.1016/j.tins.2015.06.004. [Epub ahead of print] Review. PMID:26209464

  33. Chubykin AA et al (2007) Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54(6):919–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Swaney DL, McAlister GC, Coon JJ (2008) Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods 5(11):959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin W, Kang UJ (2008) Characterization of PINK1 processing, stability, and subcellular localization. J Neurochem 106(1):464–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin SM et al (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191(5):933–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deas E et al (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20(5):867–879

    Article  CAS  PubMed  Google Scholar 

  38. Yamano K, Youle RJ (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9(11):1758–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matsuda N et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189(2):211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geisler S et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131

    Article  CAS  PubMed  Google Scholar 

  41. Narendra DP et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate parkin. PLoS Biol 8(1):e1000298

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vives-Bauza C et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107(1):378–383

    Article  CAS  PubMed  Google Scholar 

  43. Kondapalli C et al (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2

    Google Scholar 

  44. Shiba-Fukushima K et al (2012) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2:1002

    Article  PubMed  PubMed Central  Google Scholar 

  45. Han JC, Han GY (1994) A procedure for quantitative determination of tris(2-carboxyethyl)phosphine, an odorless reducing agent more stable and effective than dithiothreitol. Anal Biochem 220(1):5–10

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Li, Y., Kane, L.A., Bemben, M.A., Roche, K.W. (2015). Analysis of PINK1 and CaMKII Substrates Using Mass Spectrometry-Based Proteomics. In: Grant, J., Li, H. (eds) Analysis of Post-Translational Modifications and Proteolysis in Neuroscience. Neuromethods, vol 114. Humana Press, New York, NY. https://doi.org/10.1007/7657_2015_85

Download citation

  • DOI: https://doi.org/10.1007/7657_2015_85

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3470-6

  • Online ISBN: 978-1-4939-3472-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics