Skip to main content

Blind Signal Separation Methods in Computational Neuroscience

  • Protocol
  • First Online:
Book cover Modern Electroencephalographic Assessment Techniques

Part of the book series: Neuromethods ((NM,volume 91))

  • 1213 Accesses

Abstract

In this paper we present a survey of Blind Signal Separation (BSS) methods based on independence (Independent Component Analysis) and sparsity (Sparse Component Analysis). The presentation covers the most important methods described in the literature and gives a mathematical justification of the most used algorithms. We provide an experimental justification for the linear mixing in neurological data. Furthermore, we show the applicability of nonnegative source decomposition approaches in demixing neural images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://wiki.neurotycho.org/EEG-ECoG_recording.

References

  1. Hérault J, Jutten C, Ans B (1985) Détection de grandeurs primitives dans un message composite par une architecture de calcul neuromimétique en apprentissage non supervisé. In: 10 Colloque sur le traitement du signal et des images, FRA, 1985, GRETSI, Groupe dEtudes du Traitement du Signal et des Images

    Google Scholar 

  2. Syed M, Georgiev P, Pardalos P (2013) A hierarchical approach for sparse source blind signal separation problem. Comput Oper Res 41:386–398

    Google Scholar 

  3. Aharon M, Elad M, Bruckstein A (2006) On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear Algebra Appl 416(1):48–67

    Article  Google Scholar 

  4. Georgiev P, Theis F, Cichocki A (2005) Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans Neural Network 16(4):992–996

    Article  Google Scholar 

  5. Gribonval R, Schnass K (2010) Dictionary identification - sparse matrix-factorization via l 1-minimization. IEEE Trans Inform Theory 56(7):3523–3539

    Article  Google Scholar 

  6. Kreutz-Delgado K, Murray J, Rao B, Engan K, Lee T, Sejnowski T (2003) Dictionary learning algorithms for sparse representation. Neural Comput 15(2):349–396

    Article  PubMed Central  PubMed  Google Scholar 

  7. Te-Won L (1998) Independent component analysis, theory and applications. Kluwer Academic, Boston

    Google Scholar 

  8. Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Network 13(4):411–430

    Article  CAS  Google Scholar 

  9. Cichocki A, Zdunek R, Amari S (2006) New algorithms for non-negative matrix factorization in applications to blind source separation. In: IEEE international conference on acoustics, speech and signal processing, 2006. ICASSP 2006 Proceedings, vol 5. IEEE, pp V–V

    Google Scholar 

  10. Naanaa W, Nuzillard J (2005) Blind source separation of positive and partially correlated data. Signal Process 85(9):1711–1722

    Article  Google Scholar 

  11. Georgiev P, Pardalos P, Theis F (2007) A bilinear algorithm for sparse representations. Comput Optim Appl 38(2):249–259

    Article  Google Scholar 

  12. Daubechies I, Roussos E, Takerkart S, Benharrosh M, Golden C, D’Ardenne K, Richter W, Cohen J, Haxby J (2009) Independent component analysis for brain fMRI does not select for independence. Proc Natl Acad Sci USA 106(26):10415–10422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Network 10(3):626–634

    Article  CAS  Google Scholar 

  14. Sameni R, Jutten C, Shamsollahi M (2006) What ICA provides for ECG processing: application to noninvasive fetal ECG extraction. In: 2006 I.E. international symposium on signal processing and information technology, pp 656–661. IEEE

    Google Scholar 

  15. Bartlett M, Movellan J, Sejnowski T (2002) Face recognition by independent component analysis. IEEE Trans Neural Network 13(6):1450–1464

    Article  CAS  Google Scholar 

  16. Comon P (1994) Independent component analysis, a new concept? Signal Process 36(3):287–314

    Article  Google Scholar 

  17. Lee T, Girolami M, Sejnowski T (1999) Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11(2):417–441

    Article  CAS  PubMed  Google Scholar 

  18. Hyvärinen A, Karhunen J, Oja E (2002) Independent component analysis. Wiley, New York

    Google Scholar 

  19. Stone J (2004) Independent component analysis: A tutorial introduction. Bradford Books, Cambridge

    Google Scholar 

  20. Joho M, Mathis H, Lambert R (2000) Overdetermined blind source separation: Using more sensors than source signals in a noisy mixture. In: Proceedings of the international conference on independent component analysis and blind signal separation, pp 19–22

    Google Scholar 

  21. De Lathauwer L, De Moor B, Vandewalle J, Cardoso J (2003) Independent component analysis of largely underdetermined mixtures. In: Proceedings of the 4th international symposium on independent component analysis and blind signal separation (ICA 2003), pp 29–34

    Google Scholar 

  22. Zhang K, Chan L-W (2003) Dimension reduction based on orthogonality - a decorrelation method in ICA. In: Artificial neural networks and neural information processing - ICANN/ICONIP 2003, pp 173–173

    Google Scholar 

  23. Zhang K, Chan L-W (2006) Dimension reduction as a deflation method in ICA. IEEE Signal Process Lett 13(1):45–48

    Article  CAS  Google Scholar 

  24. Huber P (2012) Data analysis: what can be learned from the past 50 years, vol 874. Wiley, New York

    Google Scholar 

  25. Cover T, Thomas J (2006) Elements of information theory. Wiley-Interscience, New York

    Google Scholar 

  26. Pham D, Garat P (1997) Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Trans Signal Process 45(7):1712–1725

    Article  Google Scholar 

  27. Pham D, Garat P (1997) Blind separation of mixture of independent sources through a maximum likelihood approach. In: Proceedings of EUSIPCO, Citeseer

    Google Scholar 

  28. Cardoso J-F (1999) High-order contrasts for independent component analysis. Neural Comput 11(1):157–192

    Article  CAS  PubMed  Google Scholar 

  29. Cardoso J-F, Souloumiac A (1993) Blind beamforming for non-Gaussian signals. IEE Proc F Radar Signal Process (IET) 140:362–370

    Google Scholar 

  30. Cardoso J-F, Souloumiac A (1996) Jacobi angles for simultaneous diagonalization. SIAM J Matrix Anal Appl 17(1):161–164

    Article  Google Scholar 

  31. Belouchrani A, Abed-Meraim K, Cardoso J-F, Moulines E (1997) A blind source separation technique using second-order statistics. IEEE Trans Signal Process 45(2):434–444

    Article  Google Scholar 

  32. Georgiev P, Cichocki A (2003) Robust independent component analysis via time-delayed cumulant functions. IEICE Trans Fund Electron Comm Comput Sci 86(3):573–579

    Google Scholar 

  33. Georgiev P, Pardalos P, Cichocki A (2007) Algorithms with high order convergence speed for blind source extraction. Comput Optim Appl 38(1):123–131

    Article  Google Scholar 

  34. Hyvärinen A, Oja E (1997) A fast fixed-point algorithm for independent component analysis. Neural Comput 9(7):1483–1492

    Article  Google Scholar 

  35. Georgiev P, Theis F (2004) Blind source separation of linear mixtures with singular matrices. Indepen Comp Anal Blind Signal Separ 121–128

    Google Scholar 

  36. Chan T-H, Ma W-K, Chi C-Y, Wang Y (2008) A convex analysis framework for blind separation of non-negative sources. IEEE Trans Signal Process 56(10):5120–5134

    Article  Google Scholar 

  37. Yang Z, Xiang Y, Rong Y, Xie S (2013) Projection-pursuit-based method for blind separation of nonnegative sources. IEEE Trans Neural Netw Learn Syst 24(1):47–57

    Article  PubMed  Google Scholar 

  38. Sun Y, Xin J (2012) Nonnegative sparse blind source separation for NMR spectroscopy by data clustering, model reduction, and 1 minimization. SIAM J Imag Sci 5(3):886–911

    Article  Google Scholar 

  39. Georgiev P, Theis F, Ralescu A (2007) Identifiability conditions and subspace clustering in sparse BSS. Indepen Comp Anal Signal Separ 357–364

    Google Scholar 

  40. Makeig S, Bell A, Jung T, Sejnowski T et al (1996) Independent component analysis of electroencephalographic data. Adv Neural Inform Process Syst 145–151

    Google Scholar 

  41. Vigário R, Jousmäki V, Haemaelaeninen M, Haft R, Oja E (1998) Independent component analysis for identification of artifacts in magnetoencephalographic recordings. Adv Neural Inform Process Syst 229–235

    Google Scholar 

  42. Vigário R, Sarela J, Jousmiki V, Hamalainen M, Oja E (2000) Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans Biomed Eng 47(5):589–593

    Article  PubMed  Google Scholar 

  43. Bell A, Sejnowski T (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159

    Article  CAS  PubMed  Google Scholar 

  44. Makeig S, Jung T-P, Ghahremani D, Bell A, Sejnowski T (1996) What (not where) are the sources of the EEG? In: The 18th annual meeting of the cognitive science society

    Google Scholar 

  45. Jung T, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski T, et al (2000) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111(10):1745–1758

    Google Scholar 

  46. Croft R, Barry R (2000) Removal of ocular artifact from the EEG: a review. Neurophysiol Clin/Clin Neurophysiol 30(1):5–19

    Article  CAS  Google Scholar 

  47. McKeown M, Sejnowski T, et al. (1998) Independent component analysis of fMRI data: examining the assumptions. Hum Brain Mapp 6(5–6):368–372

    Google Scholar 

  48. Formisano E, Esposito F, Kriegeskorte N, Tedeschi G, Di Salle F, Goebel R (2002) Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components. Neurocomputing 49(1):241–254

    Article  Google Scholar 

  49. McKeown M, Jung T-P, Makeig S, Brown G, Kindermann S, Lee T-W, Sejnowski T (1998) Spatially independent activity patterns in functional MRI data during the stroop color-naming task. Proc Natl Acad Sci USA 95(3):803–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Stone J, Porrill J, Buchel C, Friston K (1999) Spatial, temporal, and spatiotemporal independent component analysis of fMRI data. In: Proceedings of the Leeds statistical research workshop, Citeseer

    Google Scholar 

  51. Seifritz E, Esposito F, Hennel F, Mustovic H, Neuhoff J, Bilecen D, Tedeschi G, Scheffler K, Di Salle F (2002) Spatiotemporal pattern of neural processing in the human auditory cortex. Science 297(5587):1706–1708

    Article  CAS  PubMed  Google Scholar 

  52. Li Y, Adalı T, Calhoun V (2007) Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp 28(11):1251–1266

    Article  PubMed  Google Scholar 

  53. Calhoun V, Adali T, Pearlson G, Pekar J (2001) Group ICA of functional MRI data: separability, stationarity, and inference. In: Proceedings of the international conference on ICA and BSS, vol 155, San Diego

    Google Scholar 

  54. Calhoun V, Liu J, Adalı T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(Suppl 1):S163

    Article  PubMed Central  PubMed  Google Scholar 

  55. Georgiev P, Theis F, Cichocki A, Bakardjian H (2007) Sparse component analysis: a new tool for data mining. Data Min Biomed 91–116

    Google Scholar 

Download references

Acknowledgements

Research has been partially supported by DTRA, Air Force and NSF grants. The last author is also partially supported by LATNA Laboratory, NRU HSE, RF government grant, ag. 11.G34.31.0057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mujahid N. Syed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Syed, M.N., Georgiev, P.G., Pardalos, P.M. (2013). Blind Signal Separation Methods in Computational Neuroscience. In: Sakkalis, V. (eds) Modern Electroencephalographic Assessment Techniques. Neuromethods, vol 91. Humana Press, New York, NY. https://doi.org/10.1007/7657_2013_64

Download citation

  • DOI: https://doi.org/10.1007/7657_2013_64

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1297-1

  • Online ISBN: 978-1-4939-1298-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics