Skip to main content

Operational Architectonics Methodology for EEG Analysis: Theory and Results

  • Protocol
  • First Online:
Modern Electroencephalographic Assessment Techniques

Part of the book series: Neuromethods ((NM,volume 91))

Abstract

This chapter discusses various aspects of operational architectonics methodology for EEG analysis that have been developed over the course of last 17 years in relation to nonstationarity of brain functioning. At first we detail the peculiarities and evidence for a spatial and temporal nonstationarity in the EEG signal, then we review a theoretical framework that could integrate the existing data with a focus on theoretical advantages provided by an operational architectonics framework, and finally we describe the experimental results related to methodology. In the last part of the chapter we outline the application of OA methodology to clinical, pharmacological, cognitive, and neurophilosophical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kunkel H (1980) Elektroenzephalographie und psychiatrie. In: Kisker KP, Meyer JE, Müller C, Strömgren E (eds) Psychiatrie der Gegenwart Bd. Springer, Berlin, pp 115–196

    Google Scholar 

  2. Kuffler SW, Potter DD (1964) Glia in the leech central nervous system: physiological properties and neuron-glia relationship. J Neurophysiol 27:290–320

    CAS  PubMed  Google Scholar 

  3. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29(4):788–806

    CAS  PubMed  Google Scholar 

  4. Elul R (1972) The genesis of the EEG. Int Rev Neurobiol 15:227–272

    Google Scholar 

  5. Kuffler SW (1967) Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc R Soc Lond B Biol Sci 168:1–21

    CAS  PubMed  Google Scholar 

  6. Elul R (1967) Statistical mechanisms in generation of the EEG. Program Biomed Eng 1:131–150

    Google Scholar 

  7. Elul R (1968) Brain waves: intracellular recording and statistical analysis help clarify their physiological significance. In: Enslein K (ed) Data acquisition and processing in biology and medicine. Pergamon Press, Oxford, pp 93–115

    Google Scholar 

  8. Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79:81–93

    CAS  PubMed  Google Scholar 

  9. Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, New York

    Google Scholar 

  10. Freeman WJ (1975) Mass action in the nervous system. Academic, New York

    Google Scholar 

  11. Başar E (1998) Brain function and oscillations I Brain oscillations: principles and approaches. Springer, Berlin

    Google Scholar 

  12. Andras P, Wennekers T (2007) Cortical activity pattern computation. Biosystems 87:179–185

    PubMed  Google Scholar 

  13. Moran RJ, Stephan KE, Kiebel SJ et al (2008) Bayesian estimation of synaptic physiology from the spectral responses of neural-masses. NeuroImage 42:272–284

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hadjipapas A, Casagrande E, Nevado A, Barnes GR, Green GG, Holliday IE (2009) Can we observe collective neuronal activity from macroscopic aggregate signals? NeuroImage 44:1290–1303

    PubMed  Google Scholar 

  15. van Albada SJ, Kerr CC, Chiang AKI, Rennie CJ, Robinson PA (2010) Neurophysiological changes with age probed by inverse modelling of EEG spectra. Clin Neurophysiol 121(1):21–38

    PubMed  Google Scholar 

  16. Nunez PL (2000) Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav Brain Sci 23(3):371–437

    CAS  PubMed  Google Scholar 

  17. Nunez PL, Srinivasan R (2006) A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol 117(11):2424–2435

    PubMed Central  PubMed  Google Scholar 

  18. Hughes JR, John ER (1999) Conventional and quantitative electroencephalography in psychiatry. J Neuropsychiatry Clin Neurosci 11:190–208

    CAS  PubMed  Google Scholar 

  19. Salinsky MC, Oken BS, Morehead L (1991) Test-retest reliability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 79(5):382–392

    CAS  PubMed  Google Scholar 

  20. Gasser T, Bacher P, Steinberg H (1985) Test–retest reliability of spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol 60:312–319

    CAS  PubMed  Google Scholar 

  21. Pollock VE, Schneider LS, Lyness SA (1991) Reliability of topographic quantitative EEG amplitude in healthy late-middle-aged and elderly subjects. Electroencephalogr Clin Neurophysiol 79:20–26

    CAS  PubMed  Google Scholar 

  22. Burgess A, Gruzelier J (1993) Individual reliability of amplitude distribution in topographical mapping of EEG. Electroencephalogr Clin Neurophysiol 86:219–223

    CAS  PubMed  Google Scholar 

  23. Harmony T, Fernandez T, Rodriguez M, Reyes A, Marosi E, Bernal J (1993) Test–retest reliability of EEG spectral parameters during cognitive tasks: II. Coherence. Int J Neurosci 68:263–271

    CAS  PubMed  Google Scholar 

  24. Lund TR, Sponheim SR, Iacono WG, Clementz BA (1995) Internal consistency reliability of resting EEG power spectra in schizophrenic and normal subjects. Psychophysiology 32:66–71

    CAS  PubMed  Google Scholar 

  25. Corsi-Cabrera M, Solis-Ortiz S, Guevara MA (1997) Stability of EEG inter- and intrahemispheric correlation in women. Electroencephalogr Clin Neurophysiol 102:248–255

    CAS  PubMed  Google Scholar 

  26. Fingelkurts AA, Fingelkurts AA, Ermolaev VA, Kaplan AY (2006) Stability, reliability and consistency of the compositions of brain oscillations. Int J Psychophysiol 59:116–126

    PubMed  Google Scholar 

  27. Stassen HH, Bomben G, Propping P (1987) Genetic aspects of the EEG: an investigation into the within-pair similarity of monozygotic and dizygotic twins with a new method of analysis. Electroencephalogr Clin Neurophysiol 66:489–501

    CAS  PubMed  Google Scholar 

  28. Stassen HH, Bomben G, Hell D (1998) Familial brain wave patterns: study of a 12-sib family. Psychiatr Genet 8:141–153

    CAS  PubMed  Google Scholar 

  29. van Beijsterveldt CEM, Molenaar PC, de Geus EJ, Boomsma DI (1996) Heritability of human brain functioning as assessed by electroencephalography. Am J Hum Genet 58:562–573

    PubMed Central  PubMed  Google Scholar 

  30. Smit DJA, Posthuma D, Boomsma DI, de Geus EJC (2005) Heritability of background EEG across the power spectrum. Psychophysiology 42:691–697

    CAS  PubMed  Google Scholar 

  31. van Beijsterveldt CEM, van Baal GCM (2002) Twin and family studies of the human electroencephalogram: a review and a meta-analysis. Biol Psychol 61:111–138

    PubMed  Google Scholar 

  32. Johnstone J, Gunkelman J, Lunt J (2005) Clinical database development: characterization of EEG phenotypes. Clin EEG Neurosci 36(2):99–107

    CAS  PubMed  Google Scholar 

  33. Ehlers CL, Phillips E, Gizer IR, Gilder DA, Wilhelmsen KC (2010) EEG spectral phenotypes: heritability and association with marijuana and alcohol dependence in an American Indian community study. Drug Alcohol Depend 106:101–110

    PubMed Central  PubMed  Google Scholar 

  34. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    PubMed  Google Scholar 

  35. Başar E, Başar-Eroglu C, Karakas S, Schurmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248

    PubMed  Google Scholar 

  36. Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716

    CAS  PubMed  Google Scholar 

  37. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    PubMed  Google Scholar 

  38. Başar E (1992) Brain natural frequencies are causal factors for resonances and induced rhythms. (Epilogue). In: Başar E, Bullock TH (eds) Induced rhythms in the brain. Birkhauser, Boston, MA, pp 425–467

    Google Scholar 

  39. Başar E (2008) Oscillations in “brain–body–mind”—a holistic view including the autonomous system. Brain Res 1235:2–11

    PubMed  Google Scholar 

  40. Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237

    CAS  PubMed  Google Scholar 

  41. Ilmoniemi RJ (2006) Transcranial magnetic stimulation. Wiley Encyclopedia of Biomedical Engineering, New York

    Google Scholar 

  42. Thut G, Miniussi C (2009) New insights into rhythmic brain activity from TMS–EEG studies. Trends Cogn Sci 13(4):182–189

    PubMed  Google Scholar 

  43. McFadden J (2002) Synchronous firing and its influence on the brain’s electromagnetic field: evidence for an electromagnetic field theory of consciousness. J Conscious Stud 9(4):23–50

    Google Scholar 

  44. Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286:1943–1946

    CAS  PubMed  Google Scholar 

  45. Weiss SA, Faber DS (2010) Field effects in the CNS play functional roles. Front Neural Circuits 4:15

    PubMed Central  PubMed  Google Scholar 

  46. Haken H (2006) Synergetics of brain function. Int J Psychophysiol 60:110–124

    PubMed  Google Scholar 

  47. Bodunov MV (1988) The EEG “alphabet”: the typology of human EEG stationary segments. In: Rusalov VM (ed) Individual and psychological differences and bioelectrical activity of human brain. Nauka, Moscow, pp 56–70 (in Russian)

    Google Scholar 

  48. Jansen BH, Cheng W-K (1988) Structural EEG analysis: an explorative study. Int J Biomed Comput 23:221–237

    CAS  PubMed  Google Scholar 

  49. Fingelkurts AA, Fingelkurts AA, Kaplan AY (2003) The regularities of the discrete nature of multi-variability of EEG spectral patterns. Int J Psychophysiol 47(1):23–41

    PubMed  Google Scholar 

  50. Fingelkurts AA, Fingelkurts AA, Krause CM, Kaplan AY (2003) Systematic rules underlying spectral pattern variability: experimental results and a review of the evidences. Int J Neurosci 113:1447–1473

    PubMed  Google Scholar 

  51. Kaplan AY (1998) Nonstationary EEG: methodological and experimental analysis. Usp Fiziol Nauk 29(3):35–55 (in Russian)

    PubMed  Google Scholar 

  52. Kaplan AY, Shishkin SL (2000) Application of the change-point analysis to the investigation of the brain’s electrical activity. In: Brodsky BE, Darhovsky BS (eds) Non-parametric statistical diagnosis. Problems and methods. Kluwer Academic Publishers, Dordrecht, pp 333–388

    Google Scholar 

  53. Kaplan AY, Fingelkurts AA, Fingelkurts AA, Borisov SV, Darkhovsky BS (2005) Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges. Signal Process 85:2190–2212

    Google Scholar 

  54. Fingelkurts AA, Fingelkurts AA (2001) Operational architectonics of the human brain biopotential field: towards solving the mind-brain problem. Brain Mind 2(3):261–296, http://www.bm-science.com/team/art18.pdf

    Google Scholar 

  55. Fingelkurts AA, Fingelkurts AA (2005) Mapping of the brain operational architectonics. In: Chen FJ (ed) Focus on brain mapping research. Nova Science Publishers Inc, New York, pp 59–98, http://www.bm-science.com/team/chapt3.pdf

    Google Scholar 

  56. Fingelkurts AA, Fingelkurts AA (2008) Brain-mind operational architectonics imaging: technical and methodological aspects. Open Neuroimag J 2:73–93

    PubMed Central  PubMed  Google Scholar 

  57. Betzel RF, Erickson MA, Abell M, O’Donnell BF, Hetrick WP, Sporns O (2012) Synchronization dynamics and evidence for a repertoire of network states in resting EEG. Front Comput Neurosci 6:74

    PubMed Central  PubMed  Google Scholar 

  58. Berger H (1929) Über das Elektroenkephalogramm des Menschen. Arch Psychiatr 87:527–570, Translated and reprinted in Pierre Gloor, Hans Berger on the electroencephalogram of man. Electroencephalogr Clin Neurophysiol 1969; Supp. 28. Elsevier, Amsterdam

    Google Scholar 

  59. Miwakeichi F, Martinez-Montes E, Valdes-Sosa PA, Nishiyama N, Mizuhara H, Yamaguchia Y (2004) Decomposing EEG data into space–time–frequency components using Parallel Factor Analysis. NeuroImage 22:1035–1045

    PubMed  Google Scholar 

  60. Lehmann D (1987) Principles of spatial analysis. In: Gevins AS, Remont A (eds) Methods of analysis of brain electrical and magnetic signals. Elsevier, Amsterdam, pp 309–354

    Google Scholar 

  61. Lehmann D, Strik WK, Henggeler B, Koenig T, Koukkou M (1998) Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int J Psychophysiol 29:1–11

    CAS  PubMed  Google Scholar 

  62. Freeman WJ (1990) On the problem of anomalous dispersion in chaoto-chaotic phase transitions of neural masses, and its significance for the management of perceptual information in brains. In: Haken H, Stadler M (eds) Synergetics of cognition, vol 45. Springer, Berlin, pp 126–143

    Google Scholar 

  63. Kaplan AY, Fingelkurts AA, Fingelkurts AA, Ermolaev VA (1999) Topographic variability of the EEG spectral patterns. Fiziol Cheloveka 25(2):21–29 (in Russian)

    PubMed  Google Scholar 

  64. Freeman WJ, Holmes MD (2005) Metastability, instability, and state transition in neocortex. Neural Netw 18:497–504

    PubMed  Google Scholar 

  65. Freeman WJ, Vitiello G (2005) Nonlinear brain dynamics and many-body field dynamics. Electromagn Biol Med 24:233–241

    Google Scholar 

  66. Fingelkurts AA, Fingelkurts AA, Kaplan AY (2006) Interictal EEG as a physiological adaptation. Part II. Topographic variability of composition of brain oscillations in interictal EEG. Clin Neurophysiol 117(4):789–802

    PubMed  Google Scholar 

  67. Van de Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci U S A 107:18179–18184

    PubMed  Google Scholar 

  68. Bodenstein G, Praetorius HM (1977) Feature extraction from the electroencephalogram by adaptive segmentation. Proc IEEE 65:642–652

    Google Scholar 

  69. Barlow JS (1985) Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a comparative review. J Clin Neurophysiol 2:267–304

    CAS  PubMed  Google Scholar 

  70. Gersch W (1987) Non-stationary multichannel time series analysis. In: Gevins A (ed) EEG Handbook, Revised Series, vol 1. Academic, New York

    Google Scholar 

  71. Oken BS, Chiappa KH (1988) Short-term variability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 69(3):191–198

    CAS  PubMed  Google Scholar 

  72. Shishkin SL, Brodsky BE, Darkhovsky BS, Kaplan AY (1997) EEG as a nonstationary signal: an approach to analysis based on nonparametric statistics. Fiziol Cheloveka 23(4):124–126 (in Russian)

    CAS  PubMed  Google Scholar 

  73. Fingelkurts AA (1998) Time-spatial organization of the human EEG segmental structure. Ph.D. Dissertation. MSU, Moscow, Russian Federation, 401 p, (in Russian)

    Google Scholar 

  74. Klonowski W (2009) Everything you wanted to ask about EEG but were afraid to get the right answer. Nonlinear Biomed Phys 3:2. doi:10.1186/1753-4631-3-2

    PubMed Central  PubMed  Google Scholar 

  75. Freyer F, Aquino K, Robinson PA, Ritter P, Breakspear M (2009) Bistability and non-gaussian fluctuations in spontaneous cortical activity. J Neurosci 29:8512–8524

    CAS  PubMed  Google Scholar 

  76. Latchoumane CFV, Jeong J (2010) Quantification of brain macrostates using dynamical non-stationarity of physiological time series. IEEE Trans Biomed Eng 58:1084–1093

    Google Scholar 

  77. Chu CJ, Kramer MA, Pathmanathan J et al (2012) Emergence of stable functional networks in long-term human electroencephalography. J Neurosci 32:2703–2713

    CAS  PubMed  Google Scholar 

  78. Rusinov VS (1973) The dominant focus: electrophysiological investigations. Consultants Bureau, New York, p 220 (Translated from Russian)

    Google Scholar 

  79. Burov IV, Kaplan AY (1993) The effect of amiridin on the spectral characteristics of the human EEG. Eksp Klin Farmakol 56(5):5–8 (in Russian)

    CAS  PubMed  Google Scholar 

  80. Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67:271–288

    CAS  PubMed  Google Scholar 

  81. Brodsky BE, Darkhovsky BS, Kaplan AY, Shishkin SL (1999) A nonparametric method for the segmentation of the EEG. Comput Methods Programs Biomed 60:93–106

    CAS  PubMed  Google Scholar 

  82. Fell J, Kaplan A, Darkhovsky B, Röschke J (2000) EEG analysis with nonlinear deterministic and stochastic methods: a combined strategy. Acta Neurobiol Exp 60:87–108

    CAS  Google Scholar 

  83. Fingelkurts AA, Fingelkurts AA, Kivisaari R, Pekkonen E, Ilmoniemi RJ, Kähkönen SA (2004) Local and remote functional connectivity of neocortex under the inhibition influence. NeuroImage 22(3):1390–1406

    PubMed  Google Scholar 

  84. Fingelkurts AA, Fingelkurts AA, Kivisaari R, Pekkonen E, Ilmoniemi RJ, Kähkönen SA (2004) Enhancement of GABA-related signalling is associated with increase of functional connectivity in human cortex. Hum Brain Mapp 22(1):27–39

    PubMed  Google Scholar 

  85. Freeman WJ (2004) Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clin Neurophysiol 115:2077–2088

    PubMed  Google Scholar 

  86. Fingelkurts AA, Fingelkurts AA (2010) Alpha rhythm operational architectonics in the continuum of normal and pathological brain states: current state of research. Int J Psychophysiol 76:93–106

    PubMed  Google Scholar 

  87. Freeman WJ (2004) Origin, structure, and role of background EEG activity. Part 2. Analytic phase. Clin Neurophysiol 115:2089–2107

    PubMed  Google Scholar 

  88. Wallenstein GV, Kelso JSA, Bressler SL (1995) Phase transitions in spatiotemporal patterns of brain activity and behaviour. Physica D 84(3–4):626–634

    Google Scholar 

  89. Kozma R, Freeman WJ (2002) Classification of EEG patterns using nonlinear dynamics and identifying chaotic phase transitions. Neurocomputing 44:1107–1112

    Google Scholar 

  90. Puljic M, Kozma R (2003) Phase transitions in a probabilistic cellular neural network model having local and remote connections. International joint conference on neural networks IJCNN’2003, Portland, OR, 14–19 July 2003, p 831–835

    Google Scholar 

  91. Fingelkurts AA, Fingelkurts AA, Neves CFH (2010) Natural world physical, brain operational, and mind phenomenal space-time. Phys Life Rev 7(2):195–249

    PubMed  Google Scholar 

  92. Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2005) Phase transitions in the neuropercolation model of neural populations with mixed local and nonlocal interactions. Biol Cybern 92:367–379

    PubMed  Google Scholar 

  93. Thatcher RW, John ER (1977) Functional neuroscience. Vol. 1: foundations of cognitive processes. Lawrence Erlbaum, New York

    Google Scholar 

  94. Herscovitch P (1994) Radiotracer techniques for functional neuroimaging with positron emission tomography. In: Thatcher RW, Halletr M, Zeffro T, John ER, Huerta M (eds) Functional neuroimaging: technical foundations. Academic, San Diego

    Google Scholar 

  95. Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871

    CAS  PubMed  Google Scholar 

  96. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. NeuroImage 37(4):1083–1090

    PubMed  Google Scholar 

  98. Fingelkurts AA, Fingelkurts AA (2011) Persistent operational synchrony within brain default-mode network and self-processing operations in healthy subjects. Brain Cogn 75(2):79–90

    PubMed  Google Scholar 

  99. Soroko SI, Suvorov NB, Bekshaev SS (1977) Voluntary control of the level of brain bioelectrical l activity as a method to study autoregulatory properties of CNA. In: Vasilevskii NN (ed), Adaptive self-regulation of functions. Мoscow: Meditsina, pp. 206–248

    Google Scholar 

  100. Bekshaev SS, Vasilevskii NN, Suvorov NB, Kutuev VB, Soroko SI (1978) Combined approach for analysis of temporal statistical structure of EEG rhythms. In: Adaptive reactions of the brain and their prognosis, p 117–123 (in Russian)

    Google Scholar 

  101. Soroko SI, Bekshaev SS (1981) EEG rhythms’ statistical structure and individual properties of brain self-regulation mechanisms. Fiziologich J 67:1765–1773 (in Russian)

    CAS  Google Scholar 

  102. Borisov SV, Kaplan AY, Gorbachevskaia NL, Kozlova IA (2005) Segmental structure of the EEG alpha activity in adolescents with disorders of schizophrenic spectrum. Zh Vyssh Nerv Deiat Im I P Pavlova 55(3):329–335 (in Russian)

    CAS  PubMed  Google Scholar 

  103. Fingelkurts AA, Fingelkurts AA, Kaplan AY (2006) Interictal EEG as a physiological adaptation. Part I. Composition of brain oscillations in interictal EEG. Clin Neurophysiol 117:208–222

    PubMed  Google Scholar 

  104. Fingelkurts AA, Fingelkurts AA, Rytsala H, Suominen K, Isometsa E, Kahkonen S (2006) Composition of brain oscillations in ongoing EEG during major depression disorder. Neurosci Res 56:133–144

    PubMed  Google Scholar 

  105. Fingelkurts AA, Fingelkurts AA, Kivisaari R et al (2006) Reorganization of the composition of brain oscillations and their temporal characteristics in opioid dependent patients. Prog Neuropsychopharmacol Biol Psychiatry 30:1453–1465

    CAS  PubMed  Google Scholar 

  106. Fingelkurts AA, Fingelkurts AA (2010) Short-term EEG spectral pattern as a single event in EEG phenomenology. Open Neuroimag J 4:130–156

    PubMed Central  PubMed  Google Scholar 

  107. Manuca R, Savit R (1996) Stationarity and nonstationarity in time series analysis. J Phys D 99:134–161

    Google Scholar 

  108. Fingelkurts AA, Fingelkurts AA (2004) Making complexity simpler: multivariability and metastability in the brain. Int J Neurosci 114:843–862

    PubMed  Google Scholar 

  109. Speckmann EJ, Elger CE (1998) Introduction to the neurophysiological basis of the EEG and DC potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Williams and Wilkins, Baltimore

    Google Scholar 

  110. Bullock TH (1997) Signals and signs in the nervous system: the dynamic anatomy of electrical activity. Proc Natl Acad Sci U S A 94:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Towle VL, Carder RK, Khorasani L, Lindber D (1999) Electro-corticographic coherence patterns. J Clin Neurophysiol 16:528–547

    CAS  PubMed  Google Scholar 

  112. Freeman WJ, Holmes MD, West GA, Vanhatalo S (2006) Fine spatiotemporal structure of phase in human intracranial EEG. Clin Neurophysiol 117:1228–1243

    PubMed  Google Scholar 

  113. Sviderskaya NE, Shlitner LM (1990) Coherent cortical electric activity structures in the human brain. Fiziol Cheloveka 16(3):12–19 (in Russian)

    Google Scholar 

  114. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104(32):13170–13175

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Chorlian DB, Rangaswamy M, Porjesz B (2009) EEG coherence: topography and frequency structure. Exp Brain Res 198:59–83

    PubMed  Google Scholar 

  116. Hori H, Hayasaka K, Sato K, Harada O, Iwata H (1969) A study on phase relationship in human alpha activity. Correlation of different regions. Electroencephalogr Clin Neurophysiol 26:19–24

    CAS  PubMed  Google Scholar 

  117. Ozaki H, Suzuki H (1986) Transverse relationships of the alpha rhythm on the scalp. Electroencephalogr Clin Neurophysiol 66:191–195

    Google Scholar 

  118. Thatcher RW, Krause P, Hrybyk M (1986) Corticocortical associations and EEG coherence: a two compartmental model. Electroencephalogr Clin Neurophysiol 64:123–143

    CAS  PubMed  Google Scholar 

  119. Bullock TH, Achimowicz JZ (1994) A comparative survey of oscillatory brain activity, especially gamma-band rhythms. In: Pantev C, Elbert T, Lukenhoner B (eds) Oscillatory event related brain dynamics. Plenum Publishing Corp, New York, pp 11–26

    Google Scholar 

  120. Bullock TH, McClune MC, Achimowicz JZ, Iragui-Madoz VJ, Duckrow RB, Spencer SS (1995) EEG coherence has structure in the millimeter domain: subdural and hippocampal recordings from epileptic patients. Electroencephalogr Clin Neurophysiol 95:161–177

    CAS  PubMed  Google Scholar 

  121. Shen B, Nadkarni M, Zappulla RA (1999) Spectral modulation of cortical connections measured by EEG coherence in humans. Clin Neurophysiol 110(1):115–125

    CAS  PubMed  Google Scholar 

  122. Fingelkurts AA, Fingelkurts AA, Kähkönen SA (2005) Functional connectivity in the brain—is it an elusive concept? Neurosci Biobehav Rev 28(8):827–836

    PubMed  Google Scholar 

  123. Freeman WJ (2003) The wave packet: an action potential for the 21st Century. J Integr Neurosci 2:3–30

    PubMed  Google Scholar 

  124. Kooi KA (1971) Fundamentals of electroencephalography. Harper & Row Publishers, New York

    Google Scholar 

  125. Bullock TH, McClune MC (1989) Lateral coherence of the electroencephalogram: a new measure of brain synchrony. Electroencephalogr Clin Neurophysiol 73:479–498

    CAS  PubMed  Google Scholar 

  126. Kaiser M, Görner M, Hilgetag CC (2007) Criticality of spreading dynamics in hierarchical cluster networks without inhibition. New J Phys 9:110

    Google Scholar 

  127. Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin

    Google Scholar 

  128. Hellwig B (2000) A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol Cybern 82:111–121

    CAS  PubMed  Google Scholar 

  129. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    CAS  PubMed  Google Scholar 

  130. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    PubMed  Google Scholar 

  131. Sporns O, Tononi G, Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 135:69–74

    CAS  PubMed  Google Scholar 

  132. Sporns O, Chialvo D, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex rain networks. Trends Cogn Sci 8:418–425

    PubMed  Google Scholar 

  133. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523

    PubMed  Google Scholar 

  134. Stam C, Reijneveld J (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1(1):3

    PubMed Central  PubMed  Google Scholar 

  135. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308

    Google Scholar 

  136. Freeman WJ (1991) The physiology of perception. Scientific Am, p 78–85

    Google Scholar 

  137. Molle M, Marshall L, Lutzenberger W, Pietrowsky R, Fehm HL, Born J (1996) Enhanced dynamic complexity in the human EEG during creative thinking. Neurosci Lett 208:61–64

    CAS  PubMed  Google Scholar 

  138. Lehmann D, Koenig T (1997) Spatio-temporal dynamics of alpha brain electric fields, and cognitive modes. Int J Psychophysiol 26:99–112

    CAS  PubMed  Google Scholar 

  139. Borisov SV (2002) Studying of a phasic structure of the alpha activity of human EEG. Ph.D. dissertation, MSU, Moscow, Russian Federation, 213 p, (in Russian)

    Google Scholar 

  140. Muller TJ, Koenig T, Wackermann J et al (2005) Subsecond changes of global brain state in illusory multistable motion perception. J Neural Transm 112:565–576

    PubMed  Google Scholar 

  141. Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR, Coppola R (2009) Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci U S A 106:11747–11752

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore ET (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A 103:19518–19523

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Micheloyannis S, Vourkas M, Tsirka V, Karakonstantaki E, Kanatsouli K, Stam CJ (2009) The influence of ageing on complex brain networks: a graph theoretical analysis. Hum Brain Mapp 30:200–208

    PubMed  Google Scholar 

  144. Boldyreva GN, Zhavoronkova LA, Sharova EV, Dobronravova IS (2007) Electroencephalographic intercentral interaction as a reflection of normal and pathological human brain activity. Span J Psychol 10(1):167–177

    PubMed  Google Scholar 

  145. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99

    CAS  PubMed  Google Scholar 

  146. Lantz G, Michel CM, Seeck M et al (2001) Space-oriented segmentation and 3-dimensional source reconstruction of ictal EEG patterns. Clin Neurophysiol 112:688–697

    CAS  PubMed  Google Scholar 

  147. Strik WK, Dierks T, Becker T, Lehmann D (1995) Larger topographical variance and decreased duration of brain electric microstates in depression. J Neural Transm 99:213–222

    CAS  Google Scholar 

  148. Fingelkurts AA, Fingelkurts AA, Rytsala H, Suominen K, Isometsä E, Kähkönen S (2007) Impaired functional connectivity at EEG alpha and theta frequency bands in major depression. Hum Brain Mapp 28(3):247–261

    PubMed  Google Scholar 

  149. Lehmann D, Wackermann J, Michel CM, Koenig T (1993) Space-oriented EEG segmentation reveals changes in brain electric field maps under the influence of a nootropic drug. Psychiatry Res 50:275–282

    CAS  PubMed  Google Scholar 

  150. Kinoshita T, Strik WK, Michel CM, Yagyu T, Saito M, Lehmann D (1995) Microstate segmentation of spontaneous multichannel EEG map series under diazepam and sulpiride. Pharmacopsychiatry 28:51–55

    CAS  PubMed  Google Scholar 

  151. Fingelkurts AA, Fingelkurts AA, Kähkönen S (2005) New perspectives in pharmaco-electroencephalography. Prog Neuropsychopharmacol Biol Psychiatry 29:193–199

    CAS  PubMed  Google Scholar 

  152. Fingelkurts AA, Fingelkurts AA, Kivisaari R et al (2006) Increased local and decreased remote functional connectivity at EEG alpha and beta frequency bands in opioid-dependent patients. Psychopharmacology 188(1):42–52

    CAS  PubMed  Google Scholar 

  153. Fingelkurts AA, Fingelkurts AA, Kivisaari R et al (2007) Opioid withdrawal results in an increased local and remote functional connectivity at EEG alpha and beta frequency bands. Neurosci Res 58(1):40–49

    CAS  PubMed  Google Scholar 

  154. Fingelkurts AA, Fingelkurts AA, Kivisaari R et al (2009) Methadone may restore local and remote EEG functional connectivity in opioid-dependent patients. Int J Neurosci 119(9):1469–1493

    PubMed  Google Scholar 

  155. Borisov SV, Kaplan AY, Gorbachevskaya NL, Kozlova IA (2005) Analysis of EEG structural synchrony in adolescents with schizophrenic disorders. Fiziol Cheloveka 31:16–23 (in Russian)

    CAS  PubMed  Google Scholar 

  156. Micheloyannis S, Pachou E, Stam CJ et al (2006) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87:60–66

    PubMed  Google Scholar 

  157. Rubinov M, Knock SA, Stam CJ et al (2009) Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30:403–416

    PubMed  Google Scholar 

  158. Freeman WJ (2007) Indirect biological measures of consciousness from field studies of brains as dynamical systems. Neural Netw 20:1021–1031

    PubMed  Google Scholar 

  159. Elul R (1969) Gaussian behavior of the electroencephalogram: changes during performance of mental task. Science 164(3877):328–331

    CAS  PubMed  Google Scholar 

  160. Klimesch W (1999) Event-related band power changes and memory performance. In: Pfurtscheller G, da Silva FH L (eds) Event-Related desynchronization. Handbook of electroencephalography and clinical neurophysiology. Elsevier, Amsterdam, pp 161–178

    Google Scholar 

  161. Başar E, Özgören M, Karakas S, Başar–Eroglu C (2004) Super-synergy in the brain: the grandmother percept is manifested by multiple oscillations. Int J Bifurcat Chaos 14:453–491

    Google Scholar 

  162. Fingelkurts AA, Fingelkurts AA, Krause CM, Sams M (2002) Probability interrelations between pre-/post-stimulus intervals and ERD/ERS during a memory task. Clin Neurophysiol 113:826–843

    PubMed  Google Scholar 

  163. Landa P, Gribkov D, Kaplan A (2000) Oscillatory processes in biological systems. In: Malik SK, Chandrashekaran MK, Pradhan N (eds) Nonlinear phenomena in biological and physical sciences. Indian National Science Academy, New Delhi, pp 123–152

    Google Scholar 

  164. Skinner JE, Molnar M (2000) “Response cooperativity”: a sign of a nonlinear neocortical mechanism for stimulus-binding during classical conditioning in the act. In: Malik SK, Chandrashekaran MK, Pradhan N (eds) Nonlinear phenomena in biological and physical sciences. Indian National Science Academy, New Deli, pp 223–248

    Google Scholar 

  165. Lehmann D (1971) Multichannel topography of human alpha EEG fields. Electroencephalogr Clin Neurophysiol 31:439–449

    CAS  PubMed  Google Scholar 

  166. Freeman W, Burke B, Holmes M (2003) Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates. Hum Brain Mapp 19(4):248–272

    PubMed  Google Scholar 

  167. Breakspear M, Stam CJ (2005) Dynamics of a neural system with a multiscale architecture. Philos Trans R Soc Lond B Biol Sci 360:1051–1074

    PubMed Central  PubMed  Google Scholar 

  168. Breakspear M, Terry JR (2003) Topographic organization of nonlinear interdependence in multichannel human EEG. NeuroImage 16:822–835

    Google Scholar 

  169. Stam CJ (2006) Nonlinear brain dynamics. Nova Science Publishers Inc., New York

    Google Scholar 

  170. Feinberg TE (2000) The nested hierarchy of consciousness: a neurobiological solution to the problem of mental unity. Neurocase 6(2):75–81

    Google Scholar 

  171. Feinberg TE (2009) From axons to identity: neurological explorations of the nature of the self. WW Norton & Company, New York

    Google Scholar 

  172. Feinberg TE (2012) Neuroontology, neurobiological naturalism, and consciousness: a challenge to scientific reduction and a solution. Phys Life Rev 9(1):13–34

    PubMed  Google Scholar 

  173. Palm G (1990) Cell assemblies as a guideline for brain research. Concepts Neurosci 1:133–147

    Google Scholar 

  174. Eichenbaum H (1993) Thinking about brain cell assemblies. Science 261:993–994

    CAS  PubMed  Google Scholar 

  175. Buzsáki G (2006) Rhythms of the brain. Oxford University Press, Oxford

    Google Scholar 

  176. Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  177. von der Malsburg C (1999) The what and why of binding: the modeler’s perspective. Neuron 24:95–104

    PubMed  Google Scholar 

  178. Friston K (2000) The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B Biol Sci 355:215–236

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Triesch J, von der Malsburg C (2001) Democratic integration: self-organized integration of adaptive cues. Neural Comput 13(9):2049–2074

    CAS  PubMed  Google Scholar 

  180. Kaplan AY, Borisov SV (2003) Dynamic properties of segmental characteristics of EEG alpha activity in rest conditions and during cognitive load. Zh Vyssh Nerv Deiat Im I P Pavlova 53:22–32 (in Russian)

    PubMed  Google Scholar 

  181. Averbeck BB, Lee D (2004) Coding and transmission of information by neural ensembles. Trends Neurosci 27:225–230

    CAS  PubMed  Google Scholar 

  182. Zeki S (2004) Insights into visual consciousness. In: Frackowiak RSJ, Friston KJ, Frith CD et al (eds) Human brain function. Academic, San Diego

    Google Scholar 

  183. Singer W (2001) Consciousness and the binding problem. Ann N Y Acad Sci 929:123–146

    CAS  PubMed  Google Scholar 

  184. van Leeuwen C (2007) What needs to emerge to make you conscious? J Conscious Stud 14:115–136

    Google Scholar 

  185. Pulvermueller F, Preissl H, Eulitz C, et al (1994) Brain rhythms, cell assemblies and cognition: evidence from the processing of words and pseudowords. Psycoloquy 5(48):brain-rhythms.1.pulvermueller

  186. Kirillov AB, Makarenko VI (1991) Metastability and phase transition in neural networks: statistical approach. In: Holden AV, Kryukov VI (eds) Neurocomputers and attention, vol 2. Manchester University Press, Manchester, pp 825–922

    Google Scholar 

  187. Fujisawa S, Matsuki N, Ikegaya Y (2006) Single neurons can induce phase transitions of cortical recurrent networks with multiple internal states. Cereb Cortex 16:639–654

    PubMed  Google Scholar 

  188. Leznik E, Makarenko V, Llinas R (2002) Electrotonically mediated oscillatory patterns in neuronal ensembles: an in vitro voltage-dependent dye-imaging study in the inferior olive. J Neurosci 22:2804–2815

    PubMed  Google Scholar 

  189. Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    PubMed  Google Scholar 

  190. Plenz D, Thiagarajan TC (2007) The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends Neurosci 30:101–110

    CAS  PubMed  Google Scholar 

  191. Plenz D (2012) Neuronal avalanches and coherence potentials. Eur Phys J Spec Top 205:259–301

    Google Scholar 

  192. John ER (2002) The neurophysics of consciousness. Brain Res Brain Res Rev 39:1–28

    PubMed  Google Scholar 

  193. Başar E (2005) Memory as the “whole brain work”. A large-scale model based on “oscillations in super-synergy”. Int J Psychophysiol 58:199–226

    PubMed  Google Scholar 

  194. Truccolo WA, Ding M, Knuth KH, Nakamura R, Bressler S (2002) Trial-to-trial variability of cortical evoked responses: implications for analysis of functional connectivity. Clin Neurophysiol 113:206–226

    PubMed  Google Scholar 

  195. Brodsky BE, Darkhovsky BS (1993) Nonparametric methods in change-point problems. Kluwer, Dordrecht

    Google Scholar 

  196. Geisser S, Johnson WM (2006) Modes of parametric statistical inference. Wiley, Hoboken, NJ

    Google Scholar 

  197. Lopes da Silva FH, Mars NJI (1987) Parametric methods in EEG analysis. In: Gevins AS, Remond A (eds) EEG handbook (revised series): methods of analysis of brain electrical and magnetic signals, vol 1. Elsevier Science, Amsterdam, pp 243–260

    Google Scholar 

  198. Pardey J, Roberts S, Tarassenko L (1996) A review of parametric modelling techniques for EEG analysis. Med Eng Phys 18:2–11

    CAS  PubMed  Google Scholar 

  199. Deistler M, Prohaska O, Reschenhofer E, Vollrner R (1986) Procedure for identification of different stages of EEG background activity and its application to the detection of drug effects. Electroencephalogr Clin Neurophysiol 64:294–300

    CAS  PubMed  Google Scholar 

  200. Fingelkurts AA, Fingelkurts AA (1995) Microstructural analysis of active brain EEG: general characteristics and synchronization peculiarities of change-point process. Diploma Project. MSU, Moscow, Russian Federation, 207 p, (in Russian)

    Google Scholar 

  201. Klimesch W, Schack B, Sauseng P (2005) The functional significance of theta and upper alpha oscillations. Exp Psychol 52:99–108

    PubMed  Google Scholar 

  202. Fingelkurts AA, Fingelkurts AA, Kallio S, Revonsuo A (2007) Cortex functional connectivity as a neurophysiological correlate of hypnosis: an EEG case study. Neuropsychologia 45:1452–1462

    PubMed  Google Scholar 

  203. David O, Cosmelli D, Lachaux J-P, Baillet S, Garnero L, Martinerie J (2003) A Theoretical and experimental introduction to the non-invasive study of large-scale neural phase synchronization in human beings. Int J Comput Cogn 1(4):53–77

    Google Scholar 

  204. Ainsworth M, Lee S, Cunningham MO et al (2012) Rates and rhythms: a synergistic view of frequency and temporal coding in neuronal networks. Neuron 75:572–583

    CAS  PubMed  Google Scholar 

  205. Verevkin E, Putilov D, Donskaya O, Putilov A (2007) A new SWPAQ’s scale predicts the effects of sleep deprivation on the segmental structure of alpha waves. Biol Rhythm Res 39(1):21–37

    Google Scholar 

  206. Putilov DA, Verevkin EG, Donskaya OG, Putilov AA (2007) Segmental structure of alpha waves in sleep-deprived subjects. Somnologie 11(3):202–210

    Google Scholar 

  207. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Google Scholar 

  208. Shishkin SL (1997) A study of synchronization of instants of abrupt changes in human EEG alpha activity. PhD dissertation. MSU, Moscow, Russian Federation, (in Russian)

    Google Scholar 

  209. Freeman W, Rogers L (2003) A neurobiological theory of meaning in perception. Part 5. Multicortical patterns of phase modulation in gamma EEG. Int J Bifurc Chaos 13:2867–2887

    Google Scholar 

  210. Fingelkurts AA, Fingelkurts AA (2010) Topographic mapping of rapid transitions in EEG multiple frequencies: EEG frequency domain of operational synchrony. Neurosci Res 68:207–224

    PubMed  Google Scholar 

  211. Singer W, Engel AK, Kreiter AK, Munk MHJ, Neuenschwander S, Roelfsema PR (1997) Neural assemblies: necessity, signature and detectability. Trends Cogn Sci 1:252–261

    CAS  PubMed  Google Scholar 

  212. Livanov MN, Gavrilova NA, Aslanov AS (1964) Intercorrelations between different cortical regions of human brain during mental activity. Neuropsychologia 2:281–289

    Google Scholar 

  213. Livanov MN (1977) Spatial organization of cerebral processes. Wiley, New York

    Google Scholar 

  214. Lazarev VV, Sviderskaya NE, Khomskaya ED (1977) Changes in spatial synchronization of biopotentials during various types of intellectual activity. Hum Physiol 3:187–194, a translation from Fiziol Chelov

    Google Scholar 

  215. Lazarev VV (1978) Changes of functional state of the brain during motor and intellectual activity. In: Psychological aspects of human activity. II. Industrial psychology and psychology of labour. Institute of Psychology, USSR Academy of Sciences, Moscow, p 103–114

    Google Scholar 

  216. Lazarev VV (1998) On the intercorrelation of some frequency and amplitude parameters of the human EEG and its functional significance. Com. I. Multidimensional neurodynamic organization of functional states of the brain during intellectual, perceptive and motor activity in normal subjects. Int J Psychophysiol 28:77–98

    CAS  PubMed  Google Scholar 

  217. Fingelkurts AA, Fingelkurts AA, Neves CFH (2009) Phenomenological architecture of a mind and operational architectonics of the brain: the unified metastable continuum. New Math Nat Comput 5:221–244

    Google Scholar 

  218. Bressler SL, McIntosh AR (2007) The role of neural context in large-scale neurocognitive network operations. In: Jirsa VK, McIntosh AR (eds) Handbook of brain connectivity. Springer, Berlin, pp 403–419

    Google Scholar 

  219. Kelso JAS (1995) Dynamics patterns: the self-organization of brain and behaviour. MIT Press, Cambridge, MA

    Google Scholar 

  220. Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5(1):26–36

    PubMed  Google Scholar 

  221. Kelso JAS, Tognoli E (2007) Toward a complementary neuroscience: Metastable coordination dynamics of the brain. In: Kozma R, Perlovsky L (eds) Neurodynamics of higher-level cognition and consciousness. Springer, Heidelberg

    Google Scholar 

  222. Kelso JAS, Engstrøm D (2006) The complementary nature. MIT Press, Cambridge

    Google Scholar 

  223. Kelso JAS (2009) Coordination dynamics. In: Meyers RA (ed) Encyclopedia of complexity and systems sciences. Springer, Berlin, pp 1537–1564

    Google Scholar 

  224. Fingelkurts AA, Fingelkurts AA (2012) Mind as a nested operational architectonics of the brain. Comment on “Neuroontology, neurobiological naturalism, and consciousness: a challenge to scientific reduction and a solution” by Todd E. Feinberg. Phys Life Rev 9:49–50

    PubMed  Google Scholar 

  225. Brown R, Kocarev L (2000) A unifying definition of synchronization for dynamical systems. Chaos 10:344–349

    PubMed  Google Scholar 

  226. Horwitz B (2003) The elusive concept of brain connectivity. NeuroImage 19:466–470

    PubMed  Google Scholar 

  227. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ (1993) Functional connectivity: the principal component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14

    CAS  PubMed  Google Scholar 

  228. Le Van Quyen M, Bragin A (2007) Analysis of dynamic brain oscillations: methodological advances. Trends Neurosci 30(7):365–373

    Google Scholar 

  229. Fingelkurts AA, Fingelkurts AA (2006) Timing in cognition and EEG brain dynamics: discreteness versus continuity. Cogn Process 7:135–162

    PubMed  Google Scholar 

  230. Churchland PS, Sejnowski T (1992) The computational brain. MIT, Cambridge

    Google Scholar 

  231. Fodor JA, Pylyshyn ZW (1988) Connectionism and cognitive architecture: a critical analysis. Cognition 28:3–71

    CAS  PubMed  Google Scholar 

  232. Fingelkurts AA, Fingelkurts AA, Ivashko RM, Kaplan AY (1998) EEG analysis of operational synchrony between human brain cortical areas during memory task performance. Vestn Moskovsk Univ, Series 16. Biol 1:3–11 (in Russian)

    Google Scholar 

  233. Köhler W, Held R (1947) The cortical correlate of pattern vision. Science 110:414–419

    Google Scholar 

  234. Dresp-Langley B, Durup J (2009) A plastic temporal brain code for conscious state generation. Neural Plast 2009:482696

    PubMed Central  PubMed  Google Scholar 

  235. Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26:161–167

    CAS  PubMed  Google Scholar 

  236. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59:364–374

    Google Scholar 

  237. Allegrini P, Menicucci D, Bedini R et al (2009) Spontaneous brain activity as a source of ideal 1/f noise. Phys Rev E Stat Nonlin Soft Matter Phys 80:061914

    PubMed  Google Scholar 

  238. Allegrini P, Menicucci D, Bedini R, Gemignani A, Paradisi P (2010) Complex intermittency blurred by noise: theory and application to neural dynamics. Phys Rev E Stat Nonlin Soft Matter Phys 82:015103

    PubMed  Google Scholar 

  239. Allegrini P, Paradisi P, Menicucci D, Gemignani A (2010) Fractal complexity in spontaneous EEG metastable state transitions: new vistas on integrated neural dynamics. Front Physiol 1:128

    PubMed Central  PubMed  Google Scholar 

  240. Lee MH (2007) Birkhoff's theorem, many-body response functions, and the ergodic condition. Phys Rev Lett 98:110403

    PubMed  Google Scholar 

  241. Silvestri L, Fronzoni L, Grigolini P, Allegrini P (2009) Event-driven power-law relaxation in weak turbulence. Phys Rev Lett 102:014502

    PubMed  Google Scholar 

  242. West BJ, Geneston EL, Grigolini P (2008) Maximizing information exchange between complex networks. Phys Rep 468:1–99

    Google Scholar 

  243. Shew WL, Yang H, Yu S, Roy R, Plenz D (2011) Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. J Neurosci 31(1):55–63

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167–11177

    CAS  PubMed  Google Scholar 

  245. Stanley HE (1987) Introduction to phase transitions and critical phenomena. Oxford University Press, Oxford, UK

    Google Scholar 

  246. Pöppel E (1988) Mindworks: time and conscious experience. Harcourt Brace Jovanovich, Boston

    Google Scholar 

  247. Fingelkurts AA, Fingelkurts AA, Krause CM, Kaplan AY, Borisov SV, Sams M (2003) Structural (operational) synchrony of EEG alpha activity during an auditory memory task. NeuroImage 20(1):529–542

    PubMed  Google Scholar 

  248. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    CAS  PubMed  Google Scholar 

  249. Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A 98:4259–4264

    CAS  PubMed Central  PubMed  Google Scholar 

  250. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus independent thought. Science 315:393–395

    CAS  PubMed Central  PubMed  Google Scholar 

  251. Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11:49–57

    PubMed  Google Scholar 

  252. Northoff G, Heinzel A, de Greck M et al (2006) Self-referential processing in our brain—a meta-analysis of imaging studies on the self. NeuroImage 31:440–457

    PubMed  Google Scholar 

  253. Revonsuo A (2006) Inner presence: consciousness as a biological phenomenon. MIT Press, Cambridge

    Google Scholar 

  254. Trehub A (2007) Space, self, and the theater of consciousness. Conscious Cogn 16:310–330

    PubMed  Google Scholar 

  255. Kaplan AY, Fingelkurts AA, Fingelkurts AA, Ivashko RM (1998) The temporal consistency of phasic conversions in the basic frequency components of the EEG. Zh Vyssh Nerv Deiat Im I P Pavlova 48(5):816–826 (in Russian)

    PubMed  Google Scholar 

  256. Monto S (2012) Nested synchrony—a novel cross-scale interaction among neuronal oscillations. Front Physiol 3:384

    PubMed Central  PubMed  Google Scholar 

  257. Klimesch W, Freunberger R, Sauseng P (2010) Oscillatory mechanisms of process binding in memory. Neurosci Biobehav Rev 34:1002–1014

    PubMed  Google Scholar 

  258. Cohen MX (2008) Assessing transient cross-frequency coupling in EEG data. J Neurosci Methods 168:494–499

    PubMed  Google Scholar 

  259. Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200. doi:10.3389/fnins.2010.00200

    PubMed Central  PubMed  Google Scholar 

  260. Simon HA (1962) The architecture of complexity. Proc Am Philos Soc 106:467–482

    Google Scholar 

  261. Simon HA (1995) Near-decomposability and complexity: how a mind resides in a brain. In: Morowitz H, Singer J (eds) The mind, the brain, and complex adaptive systems. Addison-Wesley, Reading, MA, pp 25–43

    Google Scholar 

  262. Pan RK, Sinha S (2009) Modularity produces small-world networks with dynamical time-scale separation. Europhys Lett 85:68006

    Google Scholar 

  263. Shanahan M (2010) Metastable chimera states in community-structured oscillator networks. Chaos 20:013108

    PubMed  Google Scholar 

  264. Müller-Linow M, Hilgetag CC, Hütt MT (2008) Organization of excitable dynamics in hierarchical biological networks. PLoS Comput Biol 4:e100019. doi:10.1371/journal.pcbi.1000190

    Google Scholar 

  265. Robinson PA, Henderson JA, Matar E, Riley P, Gray RT (2009) Dynamical reconnection and stability constraints on cortical network architecture. Phys Rev Lett 103:108104

    CAS  PubMed  Google Scholar 

  266. Kaiser M, Hilgetag CC (2010) Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Front Neuroinform 4:8. doi:10.3389/fninf.2010.00008

    PubMed Central  PubMed  Google Scholar 

  267. Fuster JM (1997) Network memory. Trends Neurosci 20:451–459

    CAS  PubMed  Google Scholar 

  268. McIntosh AR (1999) Mapping cognition to the brain through neural interactions. Memory 7:523–548

    CAS  PubMed  Google Scholar 

  269. Vincent C, Thou N, Ferguson E et al (2001) Scene specific memory in humans: neural activity associated with the detection of novelty prior to memory formation. NeuroImage 13:S758

    Google Scholar 

  270. Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613

    CAS  PubMed  Google Scholar 

  271. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    CAS  PubMed  Google Scholar 

  272. Klimesch W (1997) EEG-alpha rhythms and memory processes. Int J Psychophysiol 26:319–340

    CAS  PubMed  Google Scholar 

  273. Bressler SL, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60:139–148

    PubMed  Google Scholar 

  274. Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal oscillations in the human cortex. J Neurosci 25:3962–3972

    CAS  PubMed  Google Scholar 

  275. Palva S, Palva M (2012) Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cogn Sci 16(4):219–230

    PubMed  Google Scholar 

  276. Kaplan AY, Fingelkurts AA, Fingelkurts AA, Ivashko RM (1998) Probability patterns of the human EEG narrow-band differential spectra during memory processes. Fisiol Chelov (Hum Physiol) 24(4):453–461 (in Russian)

    Google Scholar 

  277. Herrmann WM (1982) Development and critical evaluation of an objective procedure for the electroencephalographic classification of psychotropic drugs. In: Herrmann WM (ed) EEG in drug research. Gustav Fisher, Stuttgart, NY, pp 249–351

    Google Scholar 

  278. Kaplan AY, Kochetova AG, Nezavibathko VN, Rjasina TV, Ashmarin IP (1996) Synthetic ACTH analogue SEMAX displays nootropic-like activity in humans. Neurosci Res Commun 19(2):115–123

    CAS  Google Scholar 

  279. Knyazev GG, Slobodskaya HR (2003) Personality trait of behavioural inhibition is associated with oscillatory systems reciprocal relationships. Int J Psychophysiol 48:247–261

    PubMed  Google Scholar 

  280. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53:63–88

    PubMed  Google Scholar 

  281. Palva S, Monto S, Palva JM (2010) Graph properties of synchronized cortical networks during visual working memory maintenance. NeuroImage 49:3257–3268

    PubMed  Google Scholar 

  282. Kuperstein M, Eichenbaum H, VanDeMark T (1986) Neural group properties in the rat hippocampus during the theta rhythm. Exp Brain Res 61:438–442

    CAS  PubMed  Google Scholar 

  283. Sem-Jacobsen CW, Petersen MC, Dodge HW, Lazarte JA, Holman CB (1956) Electroencephalographic rhythms from the depths of parietal, occipital and temporal lobes in man. Electroencephalogr Clin Neurophysiol 8:263–278

    CAS  PubMed  Google Scholar 

  284. Klimesch W, Doppelmayr M, Schimke H, Ripper B (1997) Theta synchronization and alpha desynchronization in a memory task. Psychophysiology 34:169–176

    CAS  PubMed  Google Scholar 

  285. Bäuml K-H, Hanslmayr S, Pastötter B, Klimesch W (2008) Oscillatory correlates of intentional updating in episodic memory. NeuroImage 41:596–604

    PubMed  Google Scholar 

  286. Fingelkurts AA, Fingelkurts AA, Krause CM, Möttönen R, Sams M (2003) Cortical operational synchrony during audio–visual speech integration. Brain Lang 85:297–312

    PubMed  Google Scholar 

  287. Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G (2012) Toward operational architectonics of consciousness: basic evidence from patients with severe cerebral injuries. Cogn Process 13:111–131

    PubMed  Google Scholar 

  288. Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G (2012) DMN operational synchrony relates to self-consciousness: evidence from patients in vegetative and minimally conscious states. Open Neuroimag J 6:55–68

    PubMed Central  PubMed  Google Scholar 

  289. Collins PY, Patel V, Joestl SS et al (2011) Scientific advisory board and the executive committee of the grand challenges on global mental health. Nature 475:27–30

    CAS  PubMed Central  PubMed  Google Scholar 

  290. Wittchen HU, Jacobi F, Rehm J et al (2011) The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21:655–679

    CAS  PubMed  Google Scholar 

  291. Uhlhaas PJ, Singer W (2012) Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 75:963–980

    CAS  PubMed  Google Scholar 

  292. Bressler SL (2003) Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharmacology 28:S35–S39

    PubMed  Google Scholar 

  293. Miller L (1990) Neuropsychodynamics of alcoholism and addiction: personality, psychopathology, and cognitive style. J Subst Abuse Treat 7:31–49

    CAS  PubMed  Google Scholar 

  294. Ornstein TJ, Iddon JL, Baldacchino AM et al (2000) Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology 23:113–126

    CAS  PubMed  Google Scholar 

  295. Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95:S91–S117

    PubMed  Google Scholar 

  296. Davis PE, Liddiard H, McMillan TM (2002) Neuropsychological deficits and opiate abuse. Drug Alcohol Depend 67:105–108

    CAS  PubMed  Google Scholar 

  297. Damasio AR (2000) The feeling of what happens. Body, emotion and the making of consciousness. Vintage, London

    Google Scholar 

  298. De Vries TJ, Shippenberg TS (2002) Neural systems underlying opiate addiction. J Neurosci 22:3321–3325

    PubMed  Google Scholar 

  299. Franken IHA (2003) Drug craving and addiction: integrating psychological and neuropsychopharmacological approaches. Prog Neuropsychopharmacol Biol Psychiatry 27:563–579

    PubMed  Google Scholar 

  300. Bressler SL (2002) Understanding cognition through large-scale cortical networks. Curr Dir Psychol Sci 11:58–61

    Google Scholar 

  301. Edelman GM, Tononi G (2000) A universe of consciousness: how matter becomes imagination. Basic Books, New York

    Google Scholar 

  302. Davidson RJ (1998) Anterior electrophysiological asymmetries, emotion, and depression: conceptual and methodological conundrums. Psychophysiology 35:607–614

    CAS  PubMed  Google Scholar 

  303. Rotenberg VS (2004) The peculiarity of the right-hemisphere function in depression: solving the paradoxes. Prog Neuropsychopharmacol Biol Psychiatry 28:1–13

    PubMed  Google Scholar 

  304. Collins A, Loftus E (1975) A spreading-activation theory of semantic processing. Psychol Rev 82:407–428

    Google Scholar 

  305. LeDoux JE (2003) The self: clues from the brain. Ann N Y Acad Sci 1001:295–304

    PubMed  Google Scholar 

  306. Ingram R (1984) Towards an information processing analysis of depression. Cogn Ther Res 8:443–478

    Google Scholar 

  307. Fossati P, LeB G, Ergis AM, Allilaire JF (2003) Qualitative analysis of verbal fluency in depression. Psychiatry Res 117:17–24

    PubMed  Google Scholar 

  308. Moore BJ, Singh KD, Kinderman P, Bentall RP, Morriss RK, Roberts N (2001) Neuroanatomical basis of semantic processing in relation to personality descriptors of self: an fMRI study in healthy subjects. Poster HBM 2001, Brighton

    Google Scholar 

  309. Siegle GJ (1999) A neural network model of attention biases in depression. In: Reggia J, Ruppin E (eds) Disorders of brain, behavior, and cognition: the neurocomputational perspective. Elsevier, New York, pp 415–441

    Google Scholar 

  310. Tononi G, Edelman GM (2000) Schizophrenia and the mechanisms of conscious integration. Brain Res Rev 31:391–400

    CAS  PubMed  Google Scholar 

  311. Rotarska-Jagiela A, van de Ven V, Oertel-Knöchel V, Uhlhaas PJ, Vogeley K, Linden DEJ (2010) Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr Res 117:21–30

    PubMed  Google Scholar 

  312. Joensen P (1986) Prevalence, incidence and classification of epilepsy in the Faroes. Acta Neurol Scand 76:150–155

    Google Scholar 

  313. Dawson KA (2004) Temporal organization of the brain: neurocognitive mechanisms and clinical implications. Brain Cogn 54:75–94

    PubMed  Google Scholar 

  314. Insel TR (2010) Rethinking schizophrenia. Nature 468:187–193

    CAS  PubMed  Google Scholar 

  315. Tost H, Bilek E, Meyer-Lindenberg A (2012) Brain connectivity in psychiatric imaging genetics. NeuroImage 62:2250–2260

    PubMed  Google Scholar 

  316. Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Pettigrew JD (1996) The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: Implications for the evolution of sleep. J Neurosci 16:3500–3506

    CAS  PubMed  Google Scholar 

  317. Zeplin H, Siegel J, Tobler I (2005) Mammalian sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Elsevier Saunders, Philadelphia

    Google Scholar 

  318. Mignot E (2008) Why we sleep: the temporal organization of recovery. PLoS Biol 6(4):e106. doi:10.1371/journal.pbio.0060106

    PubMed Central  PubMed  Google Scholar 

  319. Karni A, Tanne D, Rubenstein BS, Askenasy JJ, Sagi D (1994) Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265:679–682

    CAS  PubMed  Google Scholar 

  320. Stickgold R (2005) Sleep-dependent memory consolidation. Nature 437:1272–1278

    CAS  PubMed  Google Scholar 

  321. Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62

    PubMed  Google Scholar 

  322. Noreika V, Valli K, Lahtela H, Revonsuo A (2009) Early-night serial awakenings as a new paradigm for studies on NREM dreaming. Int J Psychophysiol 74:14–18

    PubMed  Google Scholar 

  323. Glass L (2001) Synchronization and rhythmic processes in physiology. Nature 410:277–284

    CAS  PubMed  Google Scholar 

  324. Buchman TG (2002) The community of the self. Nature 420:246–251

    CAS  PubMed  Google Scholar 

  325. Tirsch WS, Stude P, Scherb H, Keidel M (2004) Temporal order of nonlinear dynamics in human brain. Brain Res Brain Res Rev 45:79–95

    CAS  PubMed  Google Scholar 

  326. Volkow ND, Wang GJ, Hitzemann R et al (1995) Depression of thalamic metabolism by lorazepam is associated with sleepiness. Neuropsychopharmacology 12:123–132

    CAS  PubMed  Google Scholar 

  327. Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    CAS  PubMed  Google Scholar 

  328. Maremmani I, Reisinger M (1995) Methadone treatment in Europe. European Methadone Association Forum, Oct 13, Phoenix, AZ, USA

    Google Scholar 

  329. Friston KJ (1997) Transients, metastability, and neuronal dynamics. NeuroImage 5:164–171

    CAS  PubMed  Google Scholar 

  330. Vakorin VA, Lippe S, McIntosh AR (2011) Variability of brain signals processed locally transforms into higher connectivity with brain development. J Neurosci 31(17):6405–6413

    CAS  PubMed  Google Scholar 

  331. Fischer KW (1980) A theory of cognitive development: the control and construction of hierarchies of skills. Psychol Rev 87:477–531

    Google Scholar 

  332. Case R (1985) Intellectual development: birth to adulthood. Academic, New York

    Google Scholar 

  333. Case R (1987) The structure and process of intellectual development. Int J Psychol 22:571–607

    Google Scholar 

  334. Pascual-Leone J (1976) A view of cognition from a formalist's perspective. In: Riegel KF, Meacham J (eds) The developing individual in a changing world. Mouton, The Hague

    Google Scholar 

  335. van Geert P (1991) A dynamic systems model of cognitive and language growth. Psychol Rev 98:3–53

    Google Scholar 

  336. Thatcher RW, North DM, Biver CJ (2008) Development of cortical connections as measured by EEG coherence and phase delays. Hum Brain Mapp 29(12):1400–1415

    PubMed  Google Scholar 

  337. van Beijsterveldt CE, Molenaar PC, de Geus EJ, Boomsma DI (1998) Genetic and environmental influences on EEG coherence. Behav Genet 28(6):443–453

    PubMed  Google Scholar 

  338. van Baal GC, Boomsma DI, de Geus EJ (2001) Longitudinal genetic analysis of EEG coherence in young twins. Behav Genet 31(6):637–651

    PubMed  Google Scholar 

  339. Thatcher RW, North DM, Biver CJ (2009) Self-organized criticality and the development of EEG phase reset. Hum Brain Mapp 30(2):553–574

    PubMed  Google Scholar 

  340. van Baal C (1997) A genetic perspective on the developing brain. Ph.D. Dissertation, VRIJE University, The Netherlands Organization for Scientific Research

    Google Scholar 

  341. Eysenck HJ, Eysenck SBG (1976) Psychoticism as a dimension of personality. Hodder & Stoughton, London

    Google Scholar 

  342. Diamond S (1957) Personality and temperament. Harper, New York

    Google Scholar 

  343. Bekhtereva NP (1978) The neurophysiological aspects of human mental activity, 2nd edn. Oxford University Press, New York

    Google Scholar 

  344. Ramos-Loyo J, Gonzalez-Garrido AA, Amezcua C, Guevara MA (2004) Relationship between resting alpha activity and the ERPs obtained during a highly demanding selective attention task. Int J Psychophysiol 54:251–262

    PubMed  Google Scholar 

  345. Kounios J, Fleck JI, Green DL et al (2008) The origins of insight in resting-state brain activity. Neuropsychologia 46:281–291

    PubMed Central  PubMed  Google Scholar 

  346. Zeki S (2005) The Ferrier Lecture 1995 behind the seen: the functional specialization of the brain in space and time. Philos Trans R Soc Lond B Biol Sci 360:1145–1183

    PubMed Central  PubMed  Google Scholar 

  347. Pockett S (2000) The nature of consciousness: a hypothesis. Writers Club Press, Lincoln, NE

    Google Scholar 

  348. Metzinger T (2003) Being no one. The self-model theory of subjectivity. MIT Press, Cambridge

    Google Scholar 

  349. Metzinger T (2007) The self-model theory of subjectivity (SMT). Scholarpedia 2:4174

    Google Scholar 

  350. Kallio S, Revonsuo A (2003) Hypnotic phenomena and altered states of consciousness: a multilevel framework of description and explanation. Contemp Hypn 20:111–164

    Google Scholar 

  351. Hilgard ER (1986) Divided consciousness: multiple controls of human thought and action, revisedth edn. Wiley, New York

    Google Scholar 

  352. Gruzelier JH (2000) Redefining hypnosis: theory, methods and integration. Contemp Hypn 17:51–70

    Google Scholar 

  353. Von Kirchenheim C, Persinger M (1991) Time distortion: a comparison of hypnotic induction and progressive relaxation procedures. Int J Clin Exp Hypn 39:63–66

    Google Scholar 

  354. Naish P (2001) Hypnotic time perception: busy beaver or tardy timekeeper. Contemp Hypn 18:87–99

    Google Scholar 

  355. Dietrich A (2003) Functional neuroanatomy of altered states of consciousness: the transient hypofrontality hypothesis. Conscious Cogn 12:231–256

    PubMed  Google Scholar 

  356. Chalmers D (1995) Facing up to the problem of consciousness. J Conscious Stud 2:200–219

    Google Scholar 

  357. Angel L (1989) How to build a conscious machine. Westview Press, Boulder, CO

    Google Scholar 

  358. Holland O (2003) Editorial introduction. J Conscious Stud 10:1–6

    Google Scholar 

  359. Minsky M (1991) Conscious machines. Machinery of consciousness. National Research Council of Canada, Montreal

    Google Scholar 

  360. Minsky M (2006) The emotion machine: commonsense thinking, artificial intelligence, and the future of the human mind. Simon and Schuster, New York

    Google Scholar 

  361. McCarthy J (1995) Making robot conscious of their mental states. In: Muggleton S (ed) Machine intelligence. Oxford University Press, Oxford

    Google Scholar 

  362. Aleksander I (2001) The self ‘out there’. Nature 413:23

    CAS  PubMed  Google Scholar 

  363. Holland O (2003) Machine consciousness. Imprint Academic, Exeter, UK

    Google Scholar 

  364. Adami C (2006) What do robots dreams of? Science 314:1093–1094

    CAS  PubMed  Google Scholar 

  365. Chella A, Manzotti R (2007) Artificial consciousness. Imprint Academic, Exeter, UK

    Google Scholar 

  366. Fingelkurts AA, Fingelkurts AA, Neves CFH (2009) Brain and mind operational architectonics and man-made “machine” consciousness. Cogn Process 10:105–111

    PubMed  Google Scholar 

  367. Indiveri G, Chicca E, Douglas R (2006) A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Network 17:211–221

    Google Scholar 

  368. Seth AK (2009) The strength of weak artificial consciousness. Int J Mach Conscious 1:71–82

    Google Scholar 

  369. Fingelkurts AA, Fingelkurts AA, Neves CFH (2012) “Machine” consciousness and “artificial” thought: an operational architectonics model guided approach. Brain Res 1428:80–92

    CAS  PubMed  Google Scholar 

  370. Koch C, Tononi G (2008) Can machines be conscious? IEEE Spectr 6:47–51

    Google Scholar 

  371. Fingelkurts AA, Fingelkurts AA, Neves CFH (2013) Consciousness as a phenomenon in the operational architectonics of brain organization: Criticality and self-organization considerations. Chaos Solitons Fractals 55:13–31

    Google Scholar 

Download references

Acknowledgments

This work was supported by BM-Science Centre, Finland. The authors would like to thank anonymous reviewers who provided thoughtful comments and constructive criticism. Special thanks for English editing to Dmitry Skarin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew A. Fingelkurts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fingelkurts, A.A., Fingelkurts, A.A. (2013). Operational Architectonics Methodology for EEG Analysis: Theory and Results. In: Sakkalis, V. (eds) Modern Electroencephalographic Assessment Techniques. Neuromethods, vol 91. Humana Press, New York, NY. https://doi.org/10.1007/7657_2013_60

Download citation

  • DOI: https://doi.org/10.1007/7657_2013_60

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1297-1

  • Online ISBN: 978-1-4939-1298-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics