Skip to main content

Instrumentation and Physical Principles

  • Protocol
  • First Online:
Molecular Imaging in the Clinical Neurosciences

Part of the book series: Neuromethods ((NM,volume 71))

  • 1067 Accesses

Abstract

In nuclear medicine, highly sensitive scanners have been developed to image the distribution and fate of radioactively labelled molecules within living subjects. The radioactive labelling of metabolically important molecules has offered great opportunities in research, pre-clinical applications and diagnostics. These radiotracers are applied to the subject and are taken up, metabolized, catabolized in and excreted from organs. Their functions may be observed and analyzed from outside the body.

Two-dimensional images recorded with a gamma camera positioned over a specific organ can deliver time–activity data on a radiotracer. Three-dimensional images may be obtained using the tomographic modalities single photon emission computed tomography (SPECT) and positron emission tomography (PET) in combination with dedicated image reconstruction algorithms. Besides the functional images in nuclear medicine, anatomical images such as provided from X-ray computed tomography (CT) or magnetic resonance imaging (MRI) offer a superior information on the subject’s anatomy. Combined or even hybrid scanners of functional and anatomical imaging modalities, such as PET/CT, SPECT/CT and very recently MR-PET, have been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anger H (1973) Multiple plane tomographic scanner. In: Freedman (ed) Tomographic imaging in nuclear medicine. SNM, New York, pp 2–18

    Google Scholar 

  2. Kuhl D, Edwards R (1963) Image separation radioisotope scanning. Radiology 80:653–662

    Google Scholar 

  3. Rankowitz S et al (1962) Positron scanner for locating brain tumors. IRE Int Conv Rec 9:49–56

    Google Scholar 

  4. Cormack A (1963) Representation of a function by its line integrals with some radiological applications. II. J Appl Phys 35:2908–2913

    Article  Google Scholar 

  5. Houndsfield G (1995) Computerized transverse axial scanning (Tomography) Part I: Description of a system. Br J Radiol 46:1016–1022

    Article  Google Scholar 

  6. Amen DG, Carmichael BD (1997) High-resolution brain SPECT imaging in ADHD. Ann Clin Psychiatry 9(2):81–87

    PubMed  CAS  Google Scholar 

  7. Ter-Pogossian MM (1975) A positron-emission transaxial tomograph for nuclear imaging (PET). Radiology 114(1):89–98

    PubMed  CAS  Google Scholar 

  8. Phelps ME et al (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16(3):210–224

    PubMed  CAS  Google Scholar 

  9. Melcher CL, Schweitzer JS (1992) Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci 39:502–505

    Article  CAS  Google Scholar 

  10. Ljungberg M, Strand S (1991) Attenuation and scatter corretion in SPECT for sources in a nonhomogeneous object: a Monte Carlo study. J Nucl Med 32:1278–1284

    PubMed  CAS  Google Scholar 

  11. Watson CC, Newport D, Casey ME (1996) A single scatter simulation technique for scatter correction in 3D PET. In: International meeting on fully 3D-image reconstruction in radiology and nuclear medicine. Kluwer, Dorderecht, pp 215–219

    Google Scholar 

  12. Hoffman EJ, Huang SC, Phelps ME (1979) Quantification in positron emission computed tomography: I. Effect of object size. J Comput Assist Tomogr 3(3):299–308

    Article  PubMed  CAS  Google Scholar 

  13. Hoffman EJ et al (1981) Quantification in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr 5:391–400

    Article  PubMed  CAS  Google Scholar 

  14. Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. Trans Med Imag MI-1:113–122

    Google Scholar 

  15. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 20:100–108

    Google Scholar 

  16. Hasegawa BH et al (1990) Description of a simultaneous emission-transmission CT system. Proc SPIE 1231:50–60

    Article  Google Scholar 

  17. Hasegawa BH et al (1991) A prototype high-purity germanium detector system with fast photon-counting circuitry for medical imaging. Med Phys 18:900–909

    Article  PubMed  CAS  Google Scholar 

  18. Hasegawa BH et al (1993) Object specific attenuation correction of SPECT with correlated dual-energy X-ray CT. IEEE Trans Nucl Sci NS-40:1242–1252

    Google Scholar 

  19. Townsend DW (2008) Dual-modality imaging: combining anatomy and function. J Nucl Med 49:938–955

    Article  PubMed  Google Scholar 

  20. Beyer T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    PubMed  CAS  Google Scholar 

  21. Watson CC et al (2006) A method for calibrating the CT-based attenuation correction of PET in human tissue. IEEE Trans Nucl Sci 53:102–107

    Article  CAS  Google Scholar 

  22. Brix G et al (2005) Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 46(4):608–613

    PubMed  CAS  Google Scholar 

  23. Delso G et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–22

    Article  PubMed  Google Scholar 

  24. Zaihi H, del Guerra A (2011) An outlook on future design of hybrid PET/MRI systems. Med Phys 38(10):5667–89

    Article  Google Scholar 

  25. Schlemmer HP et al (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248:1028–1035

    Article  PubMed  Google Scholar 

  26. Herzog H et al (2010) The current state, challenges and perspectives of MR-PET. NeuroImage 49:2072–2082

    Article  PubMed  CAS  Google Scholar 

  27. Judenhofer MS et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  PubMed  CAS  Google Scholar 

  28. Pichler BJ et al (2006) Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47(4):639–47

    PubMed  Google Scholar 

  29. Visser EP et al (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med 50(1):139–148

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Weirich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Weirich, C., Herzog, H. (2012). Instrumentation and Physical Principles. In: Gründer, G. (eds) Molecular Imaging in the Clinical Neurosciences. Neuromethods, vol 71. Humana Press, Totowa, NJ. https://doi.org/10.1007/7657_2012_54

Download citation

  • DOI: https://doi.org/10.1007/7657_2012_54

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-988-4

  • Online ISBN: 978-1-61779-989-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics