Skip to main content

Quantification of Cerebral Blood Flow

  • Protocol
  • First Online:
Molecular Imaging in the Clinical Neurosciences

Part of the book series: Neuromethods ((NM,volume 71))

Abstract

Regional cerebral blood flow (CBF) can be quantified using oxygen-15-labelled water ([15O]H2O) and positron emission tomography. In this overview, first a description is given of the early methods developed for the first generation of PET scanners in which the volume of distribution of water (V T) had to be fixed. Next, the tracer kinetic model for [15O]H2O is presented, and it is shown that both CBF and V T can be obtained using dynamic scanning and non-linear regression. Finally, several practical issues are discussed and guidelines are given for obtaining accurate CBF measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kety SS, Schmidt CE (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27:476–483

    Article  Google Scholar 

  2. Ter-Pogossian MM, Eichling JO, Davis DO et al (1969) The determination of regional cerebral blood flow by means of water labeled with radioactive oxygen 15. Radiology 93:31–40

    PubMed  CAS  Google Scholar 

  3. Phelps ME, Hoffman EJ, Mullani NA et al (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16:210–224

    PubMed  CAS  Google Scholar 

  4. Jones T, Chesler DA, Ter Pogossian MM (1976) The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol 49:339–343

    Article  PubMed  CAS  Google Scholar 

  5. Frackowiak RS, Lenzi GL, Jones T et al (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4:727–736

    Article  PubMed  CAS  Google Scholar 

  6. West JB, Dollery CT (1962) Uptake of oxygen-15 labeled CO2 compared with carbon-11 labeled CO2 in the lung. J Appl Physiol 17:9–13

    PubMed  CAS  Google Scholar 

  7. Lammertsma AA, Jones T (1992) Low oxygen extraction fraction in tumours measured with the oxygen-15 steady state technique: effect of tissue heterogeneity. Br J Radiol 65:697–700

    Article  PubMed  CAS  Google Scholar 

  8. Blomqvist G, Lammertsma AA, Mazoyer B et al (1995) Effect of tissue heterogeneity on quantification in positron emission tomography. Eur J Nucl Med 22:652–663

    Article  PubMed  CAS  Google Scholar 

  9. Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H 152 O. I. Theory and error analysis. J Nucl Med 24:782–789

    PubMed  CAS  Google Scholar 

  10. Raichle ME, Martin WR, Herscovitch P et al (1983) Brain blood flow measured with intravenous H 152 O. II. Implementation and validation. J Nucl Med 24:790–798

    PubMed  CAS  Google Scholar 

  11. Lammertsma AA, Frackowiak RS, Hoffman JM et al (1989) The C15O2 build-up technique to measure regional cerebral blood flow and volume of distribution of water. J Cereb Blood Flow Metab 9:461–470

    Article  PubMed  CAS  Google Scholar 

  12. Lammertsma AA, Cunningham VJ, Deiber MP et al (1990) Combination of dynamic and integral methods for generating reproducible functional CBF images. J Cereb Blood Flow Metab 10:675–686

    Article  PubMed  CAS  Google Scholar 

  13. Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210

    PubMed  CAS  Google Scholar 

  14. Crone C (1963) The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand 58:292–305

    Article  PubMed  CAS  Google Scholar 

  15. Yaqub M, Boellaard R, Kropholler MA et al (2006) Optimization algorithms and weighting factors for analysis of dynamic PET studies. Phys Med Biol 51:4217–4232

    Article  PubMed  Google Scholar 

  16. Boellaard R, Van Lingen A, Van Balen SCM et al (2001) Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med 28:81–89

    Article  PubMed  CAS  Google Scholar 

  17. Iida H, Kanno I, Miura S et al (1986) Error analysis of a quantitative cerebral blood flow measurement using H 152 O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab 1986:536–545

    Article  Google Scholar 

  18. Meyer E (1989) Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H 152 O autoradiographic method and dynamic PET. J Nucl Med 30:1069–1078

    PubMed  CAS  Google Scholar 

  19. Kanno I, Lammertsma AA, Heather JD et al (1984) Measurement of cerebral blood flow using bolus inhalation of C15O2 and positron emission tomography: description of the method and its comparison with the C15O2 continuous inhalation method. J Cereb Blood Flow Metab 4:224–234

    Article  PubMed  CAS  Google Scholar 

  20. Iida H, Higano S, Tomura N et al (1988) Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O]water and dynamic positron emission tomography. J Cereb Blood Flow Metab 1988:285–288

    Article  Google Scholar 

  21. Akaike H (1978) A new look at the statistical identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  22. Lammertsma AA, Jones T, Frackowiak RSJ et al (1981) A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilisation using oxygen-15. J Comput Assist Tomogr 5:544–550

    Article  PubMed  CAS  Google Scholar 

  23. Eichling JO, Raichle ME, Grubb RL Jr et al (1974) Evidence of the limitations of water as a freely diffusible tracer in brain of the rhesus monkey. Circ Res 35:358–364

    Article  PubMed  CAS  Google Scholar 

  24. Go KG, Lammertsma AA, Paans AMJ et al (1981) Extraction of water labeled with oxygen 15 during single-capillary transit: influence of blood pressure, osmolarity, and blood-brain barrier damage. Arch Neurol 38:581–584

    Article  PubMed  CAS  Google Scholar 

  25. Huang SC, Carson RE, Hoffman EJ et al (1983) Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and 15O-water. J Cereb Blood Flow Metab 3:141–153

    Article  PubMed  CAS  Google Scholar 

  26. Koeppe RA, Holden JE, Ip WR (1985) Performance comparison of parameter estimation techniques for the quantitation of local cerebral blood flow by dynamic positron computed tomography. J Cereb Blood Flow Metab 5:224–234

    Article  PubMed  CAS  Google Scholar 

  27. Carson RE, Huang SC, Green MV (1986) Weighted integration method for local cerebral blood flow measurements with positron emission tomography. J Cereb Blood Flow Metab 6:245–258

    Article  PubMed  CAS  Google Scholar 

  28. Van den Hoff J, Burchert W, Muller-Schauenburg W et al (1993) Accurate local blood flow measurements with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization. J Nucl Med 34:1770–1777

    PubMed  Google Scholar 

  29. Boellaard R, Knaapen P, Rijbroek A et al (2005) Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and positron emission tomography. Mol Imaging Biol 7:273–285

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lammertsma, A.A. (2012). Quantification of Cerebral Blood Flow. In: Gründer, G. (eds) Molecular Imaging in the Clinical Neurosciences. Neuromethods, vol 71. Humana Press, Totowa, NJ. https://doi.org/10.1007/7657_2012_43

Download citation

  • DOI: https://doi.org/10.1007/7657_2012_43

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-988-4

  • Online ISBN: 978-1-61779-989-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics