Skip to main content

Oligodendroglioma Models

  • Protocol
  • First Online:
Animal Models of Brain Tumors

Part of the book series: Neuromethods ((NM,volume 77))

  • 1303 Accesses

Abstract

Oligodendroglial tumors are primary tumors of the central nervous system that largely affect adults. The cell of origin is undefined, but the tumors display many features reminiscent of oligodendrocytes or oligodendrocyte progenitor cells. Here, we briefly recapitulate the history of oligodendroglial tumor research, discuss the current knowledge concerning the biology of oligodendroglial tumors, and thoroughly review the various mouse models that have been used and that are currently in use to study oligodendroglial tumor development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robertson WF (1899) On a new method of obtaining a black reaction in certain tissue-elements of the central nervous system (platinum method). Scott Med Surg J 4:23–30

    Google Scholar 

  2. Bailey P, Cushing H (1925) Microchemical color reactions as an aid to the identification and classification of brain tumors. Proc Natl Acad Sci USA 11:82–84

    PubMed  CAS  Google Scholar 

  3. Bailey P, Bucy PC (1929) Oligodendrogliomas of the brain. J Pathol Bacteriol 32:735–751

    Google Scholar 

  4. Cooper ERA (1935) The relation of oligocytes and astrocytes in cerebral tumours. J Pathol Bacteriol 41:259–266

    Google Scholar 

  5. Holland EC, Li Y, Celestino J, Dai C, Schaefer L, Sawaya RA, Fuller GN (2000) Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. Am J Pathol 157:1031–1037

    PubMed  CAS  Google Scholar 

  6. Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925

    PubMed  CAS  Google Scholar 

  7. Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, Kuriyama N, Milshteyn N, Roberts T, Wendland MF, DePinho R, Israel MA (2003) Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res 63:1589–1595

    PubMed  CAS  Google Scholar 

  8. Ding H, Shannon P, Lau N, Wu X, Roncari L, Baldwin RL, Takebayashi H, Nagy A, Gutmann DH, Guha A (2003) Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 63:1106–1113

    PubMed  CAS  Google Scholar 

  9. Ohgaki H, Kita D, Favereaux A, Huang H, Homma T, Dessen P, Weiss WA, Kleihues P, Heppner FL (2006) Brain tumors in S100beta-v-erbB transgenic rats. J Neuropathol Exp Neurol 65:1111–1117

    PubMed  CAS  Google Scholar 

  10. Penfield W (1931) The classification of gliomas and neuroglia cell types. Arch Neurol Psychiatry 26:745–753

    Google Scholar 

  11. del Rio-Hortega P (1934) Estructura y sistematizacion de los gliomas y paragliomas. Arch Neurol Psychiatry 32:1117–1120

    Google Scholar 

  12. Cavenee WK, Weller M, Furnari FB, Berens ME, Nagane M, Plate KH, Huang H-JS, Israel MA, Newcomb EW, Noble MD, Bigner DD, Kleihues P (2007) World Health Organization classification of tumors: pathology and genetics of tumors of the nervous system. International Agency for Research on Cancer Press, Lyon

    Google Scholar 

  13. Mikami S, Hirose Y, Yoshida K, Kawase T, Ohnishi A, Nagashima K, Mukai M, Okada Y, Ikeda E (2007) Predominant expression of OLIG2 over ID2 in oligodendroglial tumors. Virchows Arch 450:575–584

    PubMed  CAS  Google Scholar 

  14. Ligon KL, Alberta JA, Kho AT, Weiss J, Kwaan MR, Nutt CL, Louis DN, Stiles CD, Rowitch DH (2004) The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol 63:499–509

    PubMed  CAS  Google Scholar 

  15. Marie Y, Sanson M, Mokhtari K, Leuraud P, Kujas M, Delattre JY, Poirier J, Zalc B, Hoang-Xuan K (2001) OLIG2 as a specific marker of oligodendroglial tumour cells. Lancet 358:298–300

    PubMed  CAS  Google Scholar 

  16. Lu QR, Park JK, Noll E, Chan JA, Alberta J, Yuk D, Alzamora MG, Louis DN, Stiles CD, Rowitch DH, Black PM (2001) Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors. Proc Natl Acad Sci USA 98:10851–10856

    PubMed  CAS  Google Scholar 

  17. Nishiyama A, Chang A, Trapp BD (1999) NG2+ glial cells: a novel glial cell population in the adult brain. J Neuropathol Exp Neurol 58:1113–1124

    PubMed  CAS  Google Scholar 

  18. Bannykh SI, Stolt CC, Kim J, Perry A, Wegner M (2006) Oligodendroglial-specific transcriptional factor SOX10 is ubiquitously expressed in human gliomas. J Neurooncol 76:115–127

    PubMed  CAS  Google Scholar 

  19. Ferletta M, Uhrbom L, Olofsson T, Ponten F, Westermark B (2007) Sox10 has a broad expression pattern in gliomas and enhances platelet-derived growth factor-B-induced gliomagenesis. Mol Cancer Res 5:891–897

    PubMed  CAS  Google Scholar 

  20. Rousseau A, Nutt CL, Betensky RA, Iafrate AJ, Han M, Ligon KL, Rowitch DH, Louis DN (2006) Expression of oligodendroglial and astrocytic lineage markers in diffuse gliomas: use of YKL-40, ApoE, ASCL1, and NKX2-2. J Neuropathol Exp Neurol 65:1149–1156

    PubMed  CAS  Google Scholar 

  21. Riemenschneider MJ, Koy TH, Reifenberger G (2004) Expression of oligodendrocyte lineage genes in oligodendroglial and astrocytic gliomas. Acta Neuropathol 107:277–282

    PubMed  CAS  Google Scholar 

  22. Fallon KB, Palmer CA, Roth KA, Nabors LB, Wang W, Carpenter M, Banerjee R, Forsyth P, Rich K, Perry A (2004) Prognostic value of 1p, 19q, 9p, 10q, and EGFR-FISH analyses in recurrent oligodendrogliomas. J Neuropathol Exp Neurol 63:314–322

    PubMed  CAS  Google Scholar 

  23. Iwamoto FM, Nicolardi L, Demopoulos A, Barbashina V, Salazar P, Rosenblum M, Hormigo A (2008) Clinical relevance of 1p and 19q deletion for patients with WHO grade 2 and 3 gliomas. J Neurooncol 88:293–298

    PubMed  Google Scholar 

  24. Kujas M, Lejeune J, Benouaich-Amiel A, Criniere E, Laigle-Donadey F, Marie Y, Mokhtari K, Polivka M, Bernier M, Chretien F, Couvelard A, Capelle L, Duffau H, Cornu P, Broet P, Thillet J, Carpentier AF, Sanson M, Hoang-Xuan K, Delattre JY (2005) Chromosome 1p loss: a favorable prognostic factor in low-grade gliomas. Ann Neurol 58:322–326

    PubMed  CAS  Google Scholar 

  25. Hoang-Xuan K, He J, Huguet S, Mokhtari K, Marie Y, Kujas M, Leuraud P, Capelle L, Delattre JY, Poirier J, Broet P, Sanson M (2001) Molecular heterogeneity of oligodendrogliomas suggests alternative pathways in tumor progression. Neurology 57:1278–1281

    PubMed  CAS  Google Scholar 

  26. Thiessen B, Maguire JA, McNeil K, Huntsman D, Martin MA, Horsman D (2003) Loss of heterozygosity for loci on chromosome arms 1p and 10q in oligodendroglial tumors: relationship to outcome and chemosensitivity. J Neurooncol 64:271–278

    PubMed  Google Scholar 

  27. van den Bent MJ, Looijenga LH, Langenberg K, Dinjens W, Graveland W, Uytdewilligen L, Sillevis Smitt PA, Jenkins RB, Kros JM (2003) Chromosomal anomalies in oligodendroglial tumors are correlated with clinical features. Cancer 97:1276–1284

    PubMed  Google Scholar 

  28. Walker C, Haylock B, Husband D, Joyce KA, Fildes D, Jenkinson MD, Smith T, Broome J, du Plessis DG, Warnke PC (2006) Clinical use of genotype to predict chemosensitivity in oligodendroglial tumors. Neurology 66:1661–1667

    PubMed  CAS  Google Scholar 

  29. Smith JS, Perry A, Borell TJ, Lee HK, O’Fallon J, Hosek SM, Kimmel D, Yates A, Burger PC, Scheithauer BW, Jenkins RB (2000) Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 18:636–645

    PubMed  CAS  Google Scholar 

  30. Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, Mischel PS, Nelson SF (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64:6503–6510

    PubMed  CAS  Google Scholar 

  31. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    PubMed  CAS  Google Scholar 

  32. Cairncross JG, Macdonald DR (1988) Successful chemotherapy for recurrent malignant oligodendroglioma. Ann Neurol 23:360–364

    PubMed  CAS  Google Scholar 

  33. Macdonald DR, Gaspar LE, Cairncross JG (1990) Successful chemotherapy for newly diagnosed aggressive oligodendroglioma. Ann Neurol 27:573–574

    PubMed  CAS  Google Scholar 

  34. Bauman GS, Cairncross JG (2001) Multidisciplinary management of adult anaplastic oligodendrogliomas and anaplastic mixed oligo-astrocytomas. Semin Radiat Oncol 11:170–180

    PubMed  CAS  Google Scholar 

  35. Kim L, Hochberg FH, Thornton AF, Harsh GRT, Patel H, Finkelstein D, Louis DN (1996) Procarbazine, lomustine, and vincristine (PCV) chemotherapy for grade III and grade IV oligoastrocytomas. J Neurosurg 85:602–607

    PubMed  CAS  Google Scholar 

  36. Chinot O (2001) Chemotherapy for the treatment of oligodendroglial tumors. Semin Oncol 28:13–18

    PubMed  CAS  Google Scholar 

  37. Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, Silver JS, Stark PC, Macdonald DR, Ino Y, Ramsay DA, Louis DN (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473–1479

    PubMed  CAS  Google Scholar 

  38. Ino Y, Betensky RA, Zlatescu MC, Sasaki H, Macdonald DR, Stemmer-Rachamimov AO, Ramsay DA, Cairncross JG, Louis DN (2001) Molecular subtypes of anaplastic oligodendroglioma: implications for patient management at diagnosis. Clin Cancer Res 7:839–845

    PubMed  CAS  Google Scholar 

  39. Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 145:1175–1190

    PubMed  CAS  Google Scholar 

  40. Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M (2005) Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res 11:1119–1128

    PubMed  CAS  Google Scholar 

  41. Smith JS, Alderete B, Minn Y, Borell TJ, Perry A, Mohapatra G, Hosek SM, Kimmel D, O’Fallon J, Yates A, Feuerstein BG, Burger PC, Scheithauer BW, Jenkins RB (1999) Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene 18:4144–4152

    PubMed  CAS  Google Scholar 

  42. Bigner SH, Matthews MR, Rasheed BK, Wiltshire RN, Friedman HS, Friedman AH, Stenzel TT, Dawes DM, McLendon RE, Bigner DD (1999) Molecular genetic aspects of oligodendrogliomas including analysis by comparative genomic hybridization. Am J Pathol 155:375–386

    PubMed  CAS  Google Scholar 

  43. Gelpi E, Ambros IM, Birner P, Luegmayr A, Drlicek M, Fischer I, Kleinert R, Maier H, Huemer M, Gatterbauer B, Anton J, Rossler K, Budka H, Ambros PF, Hainfellner JA (2003) Fluorescent in situ hybridization on isolated tumor cell nuclei: a sensitive method for 1p and 19q deletion analysis in paraffin-embedded oligodendroglial tumor specimens. Mod Pathol 16:708–715

    PubMed  Google Scholar 

  44. Silber JR, Bobola MS, Ghatan S, Blank A, Kolstoe DD, Berger MS (1998) O6-methylguanine-DNA methyltransferase activity in adult gliomas: relation to patient and tumor characteristics. Cancer Res 58:1068–1073

    PubMed  CAS  Google Scholar 

  45. Buccoliero AM, Arganini L, Ammannati F, Gallina P, Di Lorenzo N, Mennonna P, Taddei GL (2005) Oligodendrogliomas lacking O6-methylguanine-DNA-methyltransferase expression. J Chemother 17:321–326

    PubMed  CAS  Google Scholar 

  46. Kuo LT, Kuo KT, Lee MJ, Wei CC, Scaravilli F, Tsai JC, Tseng HM, Kuo MF, Tu YK (2009) Correlation among pathology, genetic and epigenetic profiles, and clinical outcome in oligodendroglial tumors. Int J Cancer 124:2872–2879

    PubMed  CAS  Google Scholar 

  47. Brandes AA, Tosoni A, Cavallo G, Reni M, Franceschi E, Bonaldi L, Bertorelle R, Gardiman M, Ghimenton C, Iuzzolino P, Pession A, Blatt V, Ermani M (2006) Correlations between O6-methylguanine DNA methyltransferase promoter methylation status, 1p and 19q deletions, and response to temozolomide in anaplastic and recurrent oligodendroglioma: a prospective GICNO study. J Clin Oncol 24:4746–4753

    PubMed  CAS  Google Scholar 

  48. Levin N, Lavon I, Zelikovitsh B, Fuchs D, Bokstein F, Fellig Y, Siegal T (2006) Progressive low-grade oligodendrogliomas: response to temozolomide and correlation between genetic profile and O6-methylguanine DNA methyltransferase protein expression. Cancer 106:1759–1765

    PubMed  CAS  Google Scholar 

  49. Watanabe T, Nakamura M, Kros JM, Burkhard C, Yonekawa Y, Kleihues P, Ohgaki H (2002) Phenotype versus genotype correlation in oligodendrogliomas and low-grade diffuse astrocytomas. Acta Neuropathol 103:267–275

    PubMed  CAS  Google Scholar 

  50. Dong SM, Pang JC, Poon WS, Hu J, To KF, Chang AR, Ng HK (2001) Concurrent hypermethylation of multiple genes is associated with grade of oligodendroglial tumors. J Neuropathol Exp Neurol 60:808–816

    PubMed  CAS  Google Scholar 

  51. Vogelbaum MA, Berkey B, Peereboom D, Macdonald D, Giannini C, Suh JH, Jenkins R, Herman J, Brown P, Blumenthal DT, Biggs C, Schultz C, Mehta M (2009) Phase II trial of preirradiation and concurrent temozolomide in patients with newly diagnosed anaplastic oligodendrogliomas and mixed anaplastic oligoastrocytomas: RTOG BR0131. Neurooncology 11:167–175

    CAS  Google Scholar 

  52. Nutt CL, Noble M, Chambers AF, Cairncross JG (2000) Differential expression of drug resistance genes and chemosensitivity in glial cell lineages correlate with differential response of oligodendrogliomas and astrocytomas to chemotherapy. Cancer Res 60:4812–4818

    PubMed  CAS  Google Scholar 

  53. Mollemann M, Wolter M, Felsberg J, Collins VP, Reifenberger G (2005) Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer 113:379–385

    PubMed  Google Scholar 

  54. van den Bent MJ, Dubbink HJ, Sanson M, van der Lee-Haarloo CR, Hegi M, Jeuken JW, Ibdaih A, Brandes AA, Taphoorn MJ, Frenay M, Lacombe D, Gorlia T, Dinjens WN, Kros JM (2009) MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors: a report from EORTC Brain Tumor Group Study 26951. J Clin Oncol 27:5881–5886

    PubMed  Google Scholar 

  55. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153

    PubMed  CAS  Google Scholar 

  56. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602

    PubMed  CAS  Google Scholar 

  57. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    PubMed  CAS  Google Scholar 

  58. van den Bent MJ, Dubbink HJ, Marie Y, Brandes AA, Taphoorn MJ, Wesseling P, Frenay M, Tijssen CC, Lacombe D, Idbaih A, van Marion R, Kros JM, Dinjens WN, Gorlia T, Sanson M (2010) IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res 16:1597–1604

    PubMed  Google Scholar 

  59. Bortolotto S, Chiado-Piat L, Cavalla P, Bosone I, Chio A, Mauro A, Schiffer D (2000) CDKN2A/p16 inactivation in the prognosis of oligodendrogliomas. Int J Cancer 88:554–557

    PubMed  CAS  Google Scholar 

  60. Wolter M, Reifenberger J, Blaschke B, Ichimura K, Schmidt EE, Collins VP, Reifenberger G (2001) Oligodendroglial tumors frequently demonstrate hypermethylation of the CDKN2A (MTS1, p16INK4a), p14ARF, and CDKN2B (MTS2, p15INK4b) tumor suppressor genes. J Neuropathol Exp Neurol 60:1170–1180

    PubMed  CAS  Google Scholar 

  61. Watanabe T, Yokoo H, Yokoo M, Yonekawa Y, Kleihues P, Ohgaki H (2001) Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol 60:1181–1189

    PubMed  CAS  Google Scholar 

  62. Watanabe T, Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H (2001) Promoter hypermethylation and homozygous deletion of the p14ARF and p16INK4a genes in oligodendrogliomas. Acta Neuropathol 101:185–189

    PubMed  CAS  Google Scholar 

  63. Miettinen H, Kononen J, Sallinen P, Alho H, Helen P, Helin H, Kalimo H, Paljarvi L, Isola J, Haapasalo H (1999) CDKN2/p16 predicts survival in oligodendrogliomas: comparison with astrocytomas. J Neurooncol 41:205–211

    PubMed  CAS  Google Scholar 

  64. Ohgaki H, Eibl RH, Wiestler OD, Yasargil MG, Newcomb EW, Kleihues P (1991) p53 mutations in nonastrocytic human brain tumors. Cancer Res 51:6202–6205

    PubMed  CAS  Google Scholar 

  65. Buckner JC, Gesme D Jr, O’Fallon JR, Hammack JE, Stafford S, Brown PD, Hawkins R, Scheithauer BW, Erickson BJ, Levitt R, Shaw EG, Jenkins R (2003) Phase II trial of procarbazine, lomustine, and vincristine as initial therapy for patients with low-grade oligodendroglioma or oligoastrocytoma: efficacy and associations with chromosomal abnormalities. J Clin Oncol 21:251–255

    PubMed  CAS  Google Scholar 

  66. Viana-Pereira M, Lopes JM, Little S, Milanezi F, Basto D, Pardal F, Jones C, Reis RM (2008) Analysis of EGFR overexpression. EGFR gene amplification and the EGFRvIII mutation in Portuguese high-grade gliomas. Anticancer Res 28:913–920

    PubMed  Google Scholar 

  67. Huang H, Okamoto Y, Yokoo H, Heppner FL, Vital A, Fevre-Montange M, Jouvet A, Yonekawa Y, Lazaridis EN, Kleihues P, Ohgaki H (2004) Gene expression profiling and subgroup identification of oligodendrogliomas. Oncogene 23:6012–6022

    PubMed  CAS  Google Scholar 

  68. Dehais C, Laigle-Donadey F, Marie Y, Kujas M, Lejeune J, Benouaich-Amiel A, Pedretti M, Polivka M, Xuan KH, Thillet J, Delattre JY, Sanson M (2006) Prognostic stratification of patients with anaplastic gliomas according to genetic profile. Cancer 107:1891–1897

    PubMed  CAS  Google Scholar 

  69. Ducray F, Idbaih A, de Reynies A, Bieche I, Thillet J, Mokhtari K, Lair S, Marie Y, Paris S, Vidaud M, Hoang-Xuan K, Delattre O, Delattre JY, Sanson M (2008) Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Mol Cancer 7:41

    PubMed  Google Scholar 

  70. Idbaih A, Criniere E, Marie Y, Rousseau A, Mokhtari K, Kujas M, El Houfi Y, Carpentier C, Paris S, Boisselier B, Laigle-Donadey F, Thillet J, Sanson M, Hoang-Xuan K, Delattre JY (2008) Gene amplification is a poor prognostic factor in anaplastic oligodendrogliomas. Neurooncology 10:540–547

    CAS  Google Scholar 

  71. Reifenberger J, Reifenberger G, Ichimura K, Schmidt EE, Wechsler W, Collins VP (1996) Epidermal growth factor receptor expression in oligodendroglial tumors. Am J Pathol 149:29–35

    PubMed  CAS  Google Scholar 

  72. Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D, Parsons R (1997) Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 57:4183–4186

    PubMed  CAS  Google Scholar 

  73. Rasheed BK, Stenzel TT, McLendon RE, Parsons R, Friedman AH, Friedman HS, Bigner DD, Bigner SH (1997) PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Res 57:4187–4190

    PubMed  CAS  Google Scholar 

  74. Schmidt EE, Ichimura K, Goike HM, Moshref A, Liu L, Collins VP (1999) Mutational profile of the PTEN gene in primary human astrocytic tumors and cultivated xenografts. J Neuropathol Exp Neurol 58:1170–1183

    PubMed  CAS  Google Scholar 

  75. Ichimura K, Schmidt EE, Miyakawa A, Goike HM, Collins VP (1998) Distinct patterns of deletion on 10p and 10q suggest involvement of multiple tumor suppressor genes in the development of astrocytic gliomas of different malignancy grades. Genes Chromosomes Cancer 22:9–15

    PubMed  CAS  Google Scholar 

  76. Lin H, Bondy ML, Langford LA, Hess KR, Delclos GL, Wu X, Chan W, Pershouse MA, Yung WK, Steck PA (1998) Allelic deletion analyses of MMAC/PTEN and DMBT1 loci in gliomas: relationship to prognostic significance. Clin Cancer Res 4:2447–2454

    PubMed  CAS  Google Scholar 

  77. Sanson M, Leuraud P, Aguirre-Cruz L, He J, Marie Y, Cartalat-Carel S, Mokhtari K, Duffau H, Delattre JY, Hoang-Xuan K (2002) Analysis of loss of chromosome 10q, DMBT1 homozygous deletions, and PTEN mutations in oligodendrogliomas. J Neurosurg 97:1397–1401

    PubMed  CAS  Google Scholar 

  78. Fuller CE, Schmidt RE, Roth KA, Burger PC, Scheithauer BW, Banerjee R, Trinkaus K, Lytle R, Perry A (2003) Clinical utility of fluorescence in situ hybridization (FISH) in morphologically ambiguous gliomas with hybrid oligodendroglial/astrocytic features. J Neuropathol Exp Neurol 62:1118–1128

    PubMed  Google Scholar 

  79. Reifenberger G, Louis DN (2003) Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J Neuropathol Exp Neurol 62:111–126

    PubMed  CAS  Google Scholar 

  80. Sasaki H, Zlatescu MC, Betensky RA, Ino Y, Cairncross JG, Louis DN (2001) PTEN is a target of chromosome 10q loss in anaplastic oligodendrogliomas and PTEN alterations are associated with poor prognosis. Am J Pathol 159:359–367

    PubMed  CAS  Google Scholar 

  81. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    PubMed  CAS  Google Scholar 

  82. Di Rocco F, Carroll RS, Zhang J, Black PM (1998) Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery 42:341–346

    PubMed  Google Scholar 

  83. Martinho O, Longatto-Filho A, Lambros MB, Martins A, Pinheiro C, Silva A, Pardal F, Amorim J, Mackay A, Milanezi F, Tamber N, Fenwick K, Ashworth A, Reis-Filho JS, Lopes JM, Reis RM (2009) Expression, mutation and copy number analysis of platelet-derived growth factor receptor A (PDGFRA) and its ligand PDGFA in gliomas. Br J Cancer 101:973–982

    PubMed  CAS  Google Scholar 

  84. Smith JS, Wang XY, Qian J, Hosek SM, Scheithauer BW, Jenkins RB, James CD (2000) Amplification of the platelet-derived growth factor receptor-A (PDGFRA) gene occurs in oligodendrogliomas with grade IV anaplastic features. J Neuropathol Exp Neurol 59:495–503

    PubMed  CAS  Google Scholar 

  85. Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4:e7752

    PubMed  Google Scholar 

  86. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    PubMed  CAS  Google Scholar 

  87. Cooper LA, Gutman DA, Long Q, Johnson BA, Cholleti SR, Kurc T, Saltz JH, Brat DJ, Moreno CS (2010) The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PLoS One 5:e12548

    PubMed  Google Scholar 

  88. Shoshan Y, Nishiyama A, Chang A, Mork S, Barnett GH, Cowell JK, Trapp BD, Staugaitis SM (1999) Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci USA 96:10361–10366

    PubMed  CAS  Google Scholar 

  89. Mokhtari K, Paris S, Aguirre-Cruz L, Privat N, Criniere E, Marie Y, Hauw JJ, Kujas M, Rowitch D, Hoang-Xuan K, Delattre JY, Sanson M (2005) Olig2 expression, GFAP, p53 and 1p loss analysis contribute to glioma subclassification. Neuropathol Appl Neurobiol 31:62–69

    PubMed  CAS  Google Scholar 

  90. Steck AJ, Perruisseau G (1980) Characterization of membrane markers of isolated oligodendrocytes and clonal lines of the nervous system. J Neurol Sci 47:135–144

    PubMed  CAS  Google Scholar 

  91. de la Monte SM (1989) Uniform lineage of oligodendrogliomas. Am J Pathol 135:529–540

    PubMed  Google Scholar 

  92. Tanaka J, Hokama Y, Nakamura H (1988) Myelin basic protein as a possible marker for oligodendroglioma. Acta Pathol Jpn 38:1297–1303

    PubMed  CAS  Google Scholar 

  93. Colin C, Baeza N, Tong S, Bouvier C, Quilichini B, Durbec P, Figarella-Branger D (2006) In vitro identification and functional characterization of glial precursor cells in human gliomas. Neuropathol Appl Neurobiol 32:189–202

    PubMed  CAS  Google Scholar 

  94. Galloway PG, Likavec MJ, Perry G (1990) Immunohistochemical recognition of ethylnitrosourea induced rat brain microtumors by anti-Leu 7 monoclonal antibody. Cancer Lett 49:243–248

    PubMed  CAS  Google Scholar 

  95. Sung CC, Collins R, Li J, Pearl DK, Coons SW, Scheithauer BW, Johnson PC, Yates AJ (1996) Glycolipids and myelin proteins in human oligodendrogliomas. Glycoconjug J 13:433–443

    CAS  Google Scholar 

  96. Katsetos CD, Del Valle L, Geddes JF, Aldape K, Boyd JC, Legido A, Khalili K, Perentes E, Mork SJ (2002) Localization of the neuronal class III beta-tubulin in oligodendrogliomas: comparison with Ki-67 proliferative index and 1p/19q status. J Neuropathol Exp Neurol 61:307–320

    PubMed  CAS  Google Scholar 

  97. Blumcke I, Becker AJ, Normann S, Hans V, Riederer BM, Krajewski S, Wiestler OD, Reifenberger G (2001) Distinct expression pattern of microtubule-associated protein-2 in human oligodendrogliomas and glial precursor cells. J Neuropathol Exp Neurol 60:984–993

    PubMed  CAS  Google Scholar 

  98. Kraus JA, Koopmann J, Kaskel P, Maintz D, Brandner S, Schramm J, Louis DN, Wiestler OD, von Deimling A (1995) Shared allelic losses on chromosomes 1p and 19q suggest a common origin of oligodendroglioma and oligoastrocytoma. J Neuropathol Exp Neurol 54:91–95

    PubMed  CAS  Google Scholar 

  99. Louis DN, Gusella JF (1995) A tiger behind many doors: multiple genetic pathways to malignant glioma. Trends Genet 11:412–415

    PubMed  CAS  Google Scholar 

  100. Hayes HM, Priester WA Jr, Pendergrass TW (1975) Occurrence of nervous-tissue tumors in cattle, horses, cats and dogs. Int J Cancer 15:39–47

    PubMed  CAS  Google Scholar 

  101. Holland CT, Charles JA, Smith SH, Cortaville PE (2000) Hemihyperaesthesia and hyperresponsiveness resembling central pain syndrome in a dog with a forebrain oligodendroglioma. Aust Vet J 78:676–680

    PubMed  CAS  Google Scholar 

  102. Zaki FA (1977) Spontaneous central nervous system tumors in the dog. Vet Clin North Am 7:153–163

    PubMed  CAS  Google Scholar 

  103. Dickinson PJ, Keel MK, Higgins RJ, Koblik PD, LeCouteur RA, Naydan DK, Bollen AW, Vernau W (2000) Clinical and pathologic features of oligodendrogliomas in two cats. Vet Pathol 37:160–167

    PubMed  CAS  Google Scholar 

  104. Sumi N, Stavrou D, Frohberg H, Jochmann G (1976) The incidence of spontaneous tumors of the central nervous system of Wistar rats. Arch Toxicol 35:1–13

    PubMed  CAS  Google Scholar 

  105. Fitzgerald JE, Schardein JL, Kurtz SM (1974) Spontaneous tumors of the nervous system in albino rats. J Natl Cancer Inst 52:265–273

    PubMed  CAS  Google Scholar 

  106. Newman AJ, Mawdesley-Thomas LE (1974) Spontaneous tumours of the central nervous system of laboratory rats. J Comp Pathol 84:39–50

    PubMed  CAS  Google Scholar 

  107. Bots GT, Kroes R, Feron VJ (1968) Spontaneous tumors of the brain in rats. A report of 3 cases. Pathol Vet 5:290–296

    PubMed  CAS  Google Scholar 

  108. Baker JR, Kippax IS (1980) An oligodendroglioma in a bull. Vet Rec 107:42

    PubMed  CAS  Google Scholar 

  109. Swanstrom R, Parker RC, Varmus HE, Bishop JM (1983) Transduction of a cellular oncogene: the genesis of Rous sarcoma virus. Proc Natl Acad Sci USA 80:2519–2523

    PubMed  CAS  Google Scholar 

  110. Garcia P, Shoelson SE, Drew JS, Miller WT (1994) Phosphopeptide occupancy and photoaffinity cross-linking of the v-Src SH2 domain attenuates tyrosine kinase activity. J Biol Chem 269:30574–30579

    PubMed  CAS  Google Scholar 

  111. Rabotti GF, Grove AS Jr, Sellers RL, Anderson WR (1966) Induction of multiple brain tumours (gliomata and leptomeningeal sarcomata) in dogs by Rous sarcoma virus. Nature 209:884–886

    PubMed  CAS  Google Scholar 

  112. Grove AS Jr, Di Chiro G, Rabotti GF (1967) Experimental brain tumors, with a report of those induced in dogs by Rous sarcoma virus. J Neurosurg 26:465–477

    PubMed  Google Scholar 

  113. Bigner DD, Odom GL, Mahaley MS Jr, Day ED (1969) Brain tumors induced in dogs by the Schmidt-Ruppin strain of Rous sarcoma virus. Neuropathological and immunological observations. J Neuropathol Exp Neurol 28:648–680

    PubMed  CAS  Google Scholar 

  114. Kumanishi T, Ikuta F, Yamamoto T (1973) Brain tumors induced by Rous sarcoma virus, Schmidt-Ruppin strain. 3. Morphology of brain tumors induced in adult mice. J Natl Cancer Inst 50:95–109

    PubMed  CAS  Google Scholar 

  115. Rabotti GF, Sellers RL, Anderson WA (1966) Leptomeningeal sarcomata and gliomata induced in rabbits by Rous sarcoma virus. Nature 209:524–526

    PubMed  CAS  Google Scholar 

  116. Benda P, Lightbody J, Sato G, Levine L, Sweet W (1968) Differentiated rat glial cell strain in tissue culture. Science 161:370–371

    PubMed  CAS  Google Scholar 

  117. Takizawa S, Nishihara H (1971) Induction of tumors in the brain, kidney, and other extra-mammary gland organs by a continuous oral administration of N-nitrosobutylurea in Wistar-Furth rats. Gann 62:495–503

    PubMed  CAS  Google Scholar 

  118. Searle CE, Jones EL, Smith WT (1972) Induction of brain tumours in high yield by administration of N-ethyl-N-nitrosourea to newborn rats. Experientia 28:1452–1453

    PubMed  CAS  Google Scholar 

  119. Kleihues P, Zulch KJ, Matsumoto S, Radke U (1970) Morphology of malignant gliomas induced in rabbits by systemic application of N-methyl-N-nitrosourea. Z Neurol 198:65–78

    PubMed  CAS  Google Scholar 

  120. Stavrou D, Haglid KG, Weidenbach W (1971) The brain specific proteins S 100 and 14.3.2 in experimental brain tumors of the rat. Z Gesamte Exp Med 156:237–242

    PubMed  CAS  Google Scholar 

  121. Grossi-Paoletti E, Paoletti P, Pezzotta S, Schiffer D, Fabiani A (1972) Tumors of the nervous system induced by ethylnitrosourea administered either intracerebrally of subcutaneously to newborn rats. Morphological and biochemical characteristics. J Neurosurg 37:580–590

    PubMed  CAS  Google Scholar 

  122. Stavrou D, Haglid KG, Ronnback L (1973) The S-100 protein in rat brain and in methylnitrosourea-induced tumors of the rat nervous system. A quantitative study. Eur Neurol 10:168–178

    PubMed  CAS  Google Scholar 

  123. Oyasu R, Battifora HA, Clasen RA, McDonald JH, Hass GM (1970) Induction of cerebral gliomas in rats with dietary lead subacetate and 2-acetylaminofluorene. Cancer Res 30:1248–1261

    PubMed  CAS  Google Scholar 

  124. Kleihues P, Mende C, Reucher W (1972) Tumours of the peripheral and central nervous system induced in BD-rats by prenatal application of methyl methanesulfonate. Eur J Cancer 8:641–645

    PubMed  CAS  Google Scholar 

  125. Eagle H (1955) Nutrition needs of mammalian cells in tissue culture. Science 122:501–514

    PubMed  CAS  Google Scholar 

  126. Norrell HA Jr, Wilson CB (1966) Heterologous transplantation of human glial tumors. Surg Forum 17:431–432

    PubMed  Google Scholar 

  127. Philipson LH, Schwartz NB (1984) Subcellular localization of hyaluronate synthetase in oligodendroglioma cells. J Biol Chem 259:5017–5023

    PubMed  CAS  Google Scholar 

  128. Kennedy PG, Watkins BA, LaThangue NB, Clements GB, Thomas DG (1987) A cultured human oligodendroglioma cell line and herpes simplex virus-infected cells share antigenic determinants. J Neurooncol 4:389–396

    PubMed  CAS  Google Scholar 

  129. Post GR, Dawson G (1992) Characterization of a cell line derived from a human oligodendroglioma. Mol Chem Neuropathol 16:303–317

    PubMed  CAS  Google Scholar 

  130. Manuelidis L, Yu RK, Manuelidis EE (1977) Ganglioside content and pattern in human gliomas in culture. Correlation of morphological changes with altered gangliosides. Acta Neuropathol 38:129–135

    PubMed  CAS  Google Scholar 

  131. McLaurin J, Trudel GC, Shaw IT, Antel JP, Cashman NR (1995) A human glial hybrid cell line differentially expressing genes subserving oligodendrocyte and astrocyte phenotype. J Neurobiol 26:283–293

    PubMed  CAS  Google Scholar 

  132. Miyake E (1979) Establishment of a human oligodendroglial cell line. Acta Neuropathol 46:51–55

    PubMed  CAS  Google Scholar 

  133. Kelly JJ, Blough MD, Stechishin OD, Chan JA, Beauchamp D, Perizzolo M, Demetrick DJ, Steele L, Auer RN, Hader WJ, Westgate M, Parney IF, Jenkins R, Cairncross JG, Weiss S (2010) Oligodendroglioma cell lines containing t(1;19)(q10;p10). Neuro Oncol 12(7):745–755

    PubMed  CAS  Google Scholar 

  134. Holland EC, Hively WP, DePinho RA, Varmus HE (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675–3685

    PubMed  CAS  Google Scholar 

  135. Holland EC, Varmus HE (1998) Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci USA 95:1218–1223

    PubMed  CAS  Google Scholar 

  136. Orsulic S, Li Y, Soslow RA, Vitale-Cross LA, Gutkind JS, Varmus HE (2002) Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell 1:53–62

    PubMed  CAS  Google Scholar 

  137. Lewis BC, Klimstra DS, Varmus HE (2003) The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Genes Dev 17:3127–3138

    PubMed  CAS  Google Scholar 

  138. Lewis BC, Klimstra DS, Socci ND, Xu S, Koutcher JA, Varmus HE (2005) The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Mol Cell Biol 25:1228–1237

    PubMed  CAS  Google Scholar 

  139. Du Z, Podsypanina K, Huang S, McGrath A, Toneff MJ, Bogoslovskaia E, Zhang X, Moraes RC, Fluck M, Allred DC, Lewis MT, Varmus HE, Li Y (2006) Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proc Natl Acad Sci USA 103:17396–17401

    PubMed  CAS  Google Scholar 

  140. Hughes SH, Greenhouse JJ, Petropoulos CJ, Sutrave P (1987) Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol 61:3004–3012

    PubMed  CAS  Google Scholar 

  141. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    PubMed  CAS  Google Scholar 

  142. Lindberg N, Kastemar M, Olofsson T, Smits A, Uhrbom L (2009) Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene 28:2266–2275

    PubMed  CAS  Google Scholar 

  143. Tchougounova E, Kastemar M, Brasater D, Holland EC, Westermark B, Uhrbom L (2007) Loss of Arf causes tumor progression of PDGFB-induced oligodendroglioma. Oncogene 26(43):6289–96

    PubMed  CAS  Google Scholar 

  144. Lindberg N, Uhrbom L (2012) Unpublished data

    Google Scholar 

  145. Liu Y, Yeh N, Zhu XH, Leversha M, Cordon-Cardo C, Ghossein R, Singh B, Holland E, Koff A (2007) Somatic cell type specific gene transfer reveals a tumor-promoting function for p21(Waf1/Cip1). EMBO J 26:4683–4693

    PubMed  CAS  Google Scholar 

  146. See WL, Heinberg AR, Holland EC, Resh MD (2010) p27 deficiency is associated with migration defects in PDGF-expressing gliomas in vivo. Cell Cycle 9(8):1562–7

    PubMed  CAS  Google Scholar 

  147. See WL, Miller JP, Squatrito M, Holland E, Resh MD, Koff A (2010) Defective DNA double-strand break repair underlies enhanced tumorigenesis and chromosomal instability in p27-deficient mice with growth factor-induced oligodendrogliomas. Oncogene 29:1720–1731

    PubMed  CAS  Google Scholar 

  148. Moore LM, Holmes KM, Smith SM, Wu Y, Tchougounova E, Uhrbom L, Sawaya R, Bruner JM, Fuller GN, Zhang W (2009) IGFBP2 is a candidate biomarker for Ink4a-Arf status and a therapeutic target for high-grade gliomas. Proc Natl Acad Sci USA 106:16675–16679

    PubMed  CAS  Google Scholar 

  149. Dunlap SM, Celestino J, Wang H, Jiang R, Holland EC, Fuller GN, Zhang W (2007) Insulin-like growth factor binding protein 2 promotes glioma development and progression. Proc Natl Acad Sci USA 104:11736–11741

    PubMed  CAS  Google Scholar 

  150. Tchougounova E, Jiang Y, Brasater D, Lindberg N, Kastemar M, Asplund A, Westermark B, Uhrbom L (2009) Sox5 can suppress platelet-derived growth factor B-induced glioma development in Ink4a-deficient mice through induction of acute cellular senescence. Oncogene 28:1537–1548

    PubMed  CAS  Google Scholar 

  151. Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D, Holland EC (2010) Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6:141–152

    PubMed  CAS  Google Scholar 

  152. Squatrito M, Brennan CW, Helmy K, Huse JT, Petrini JH, Holland EC (2010) Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18:619–629

    PubMed  CAS  Google Scholar 

  153. Momota H, Nerio E, Holland EC (2005) Perifosine inhibits multiple signaling pathways in glial progenitors and cooperates with temozolomide to arrest cell proliferation in gliomas in vivo. Cancer Res 65:7429–7435

    PubMed  CAS  Google Scholar 

  154. Karrlander M, Lindberg N, Olofsson T, Kastemar M, Olsson AK, Uhrbom L (2009) Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma. PLoS One 4:e8536

    PubMed  Google Scholar 

  155. Radner H, el-Shabrawi Y, Eibl RH, Brustle O, Kenner L, Kleihues P, Wiestler OD (1993) Tumor induction by ras and myc oncogenes in fetal and neonatal brain: modulating effects of developmental stage and retroviral dose. Acta Neuropathol 86:456–465

    PubMed  CAS  Google Scholar 

  156. Uhrbom L, Hesselager G, Nister M, Westermark B (1998) Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58:5275–5279

    PubMed  CAS  Google Scholar 

  157. Hesselager G, Uhrbom L, Westermark B, Nister M (2003) Complementary effects of platelet-derived growth factor autocrine stimulation and p53 or Ink4a-Arf deletion in a mouse glioma model. Cancer Res 63:4305–4309

    PubMed  CAS  Google Scholar 

  158. Wolf RM, Draghi N, Liang X, Dai C, Uhrbom L, Eklof C, Westermark B, Holland EC, Resh MD (2003) p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: a putative tumor suppressor encoded on human chromosome 19q13.3. Genes Dev 17:476–487

    PubMed  CAS  Google Scholar 

  159. Swartling FJ, Ferletta M, Kastemar M, Weiss WA, Westermark B (2009) Cyclic GMP-dependent protein kinase II inhibits cell proliferation, Sox9 expression and Akt phosphorylation in human glioma cell lines. Oncogene 28:3121–3131

    PubMed  CAS  Google Scholar 

  160. Johansson FK, Brodd J, Eklof C, Ferletta M, Hesselager G, Tiger CF, Uhrbom L, Westermark B (2004) Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging. Proc Natl Acad Sci USA 101:11334–11337

    PubMed  CAS  Google Scholar 

  161. Johansson FK, Goransson H, Westermark B (2005) Expression analysis of genes involved in brain tumor progression driven by retroviral insertional mutagenesis in mice. Oncogene 24:3896–3905

    PubMed  CAS  Google Scholar 

  162. Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, Tang Y, DeFrances J, Stover E, Weissleder R, Rowitch DH, Louis DN, DePinho RA (2002) Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1:269–277

    PubMed  CAS  Google Scholar 

  163. Persson AI, Petritsch C, Swartling FJ, Itsara M, Sim FJ, Auvergne R, Goldenberg DD, Vandenberg SR, Nguyen KN, Yakovenko S, Ayers-Ringler J, Nishiyama A, Stallcup WB, Berger MS, Bergers G, McKnight TR, Goldman SA, Weiss WA (2010) Non-stem cell origin for oligodendroglioma. Cancer Cell 18:669–682

    PubMed  CAS  Google Scholar 

  164. Yokoo H, Tanaka Y, Nobusawa S, Nakazato Y, Ohgaki H (2008) Immunohistochemical and ultrastructural characterization of brain tumors in S100beta-v-erbB transgenic rats. Neuropathology 28:591–598

    PubMed  Google Scholar 

  165. Ling BC, Wu J, Miller SJ, Monk KR, Shamekh R, Rizvi TA, Decourten-Myers G, Vogel KS, DeClue JE, Ratner N (2005) Role for the epidermal growth factor receptor in neurofibromatosis-related peripheral nerve tumorigenesis. Cancer Cell 7:65–75

    PubMed  CAS  Google Scholar 

  166. Hede SM, Hansson I, Afink GB, Eriksson A, Nazarenko I, Andrae J, Genove G, Westermark B, Nister M (2009) GFAP promoter driven transgenic expression of PDGFB in the mouse brain leads to glioblastoma in a Trp53 null background. Glia 57:1143–1153

    PubMed  Google Scholar 

  167. Niklasson M, Bergstrom T, Zhang XQ, Gustafsdottir SM, Sjogren M, Edqvist PH, Vennstrom B, Forsberg M, Forsberg-Nilsson K (2010) Enlarged lateral ventricles and aberrant behavior in mice overexpressing PDGF-B in embryonic neural stem cells. Exp Cell Res 316:2779–2789

    PubMed  CAS  Google Scholar 

  168. Ekstrand AJ, Sugawa N, James CD, Collins VP (1992) Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA 89:4309–4313

    PubMed  CAS  Google Scholar 

  169. Bogler O, Wren D, Barnett SC, Land H, Noble M (1990) Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proc Natl Acad Sci USA 87:6368–6372

    PubMed  CAS  Google Scholar 

  170. Redwine JM, Armstrong RC (1998) In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J Neurobiol 37:413–428

    PubMed  CAS  Google Scholar 

  171. Redwine JM, Blinder KL, Armstrong RC (1997) In situ expression of fibroblast growth factor receptors by oligodendrocyte progenitors and oligodendrocytes in adult mouse central nervous system. J Neurosci Res 50:229–237

    PubMed  CAS  Google Scholar 

  172. Aguirre A, Gallo V (2007) Reduced EGFR signaling in progenitor cells of the adult subventricular zone attenuates oligodendrogenesis after demyelination. Neuron Glia Biol 3:209–220

    PubMed  Google Scholar 

  173. Aguirre A, Dupree JL, Mangin JM, Gallo V (2007) A functional role for EGFR signaling in myelination and remyelination. Nat Neurosci 10:990–1002

    PubMed  CAS  Google Scholar 

  174. Lei H, Kazlauskas A (2009) Growth factors outside of the platelet-derived growth factor (PDGF) family employ reactive oxygen species/Src family kinases to activate PDGF receptor alpha and thereby promote proliferation and survival of cells. J Biol Chem 284:6329–6336

    PubMed  CAS  Google Scholar 

  175. Nitta M, Kozono D, Kennedy R, Stommel J, Ng K, Zinn PO, Kushwaha D, Kesari S, Furnari F, Hoadley KA, Chin L, DePinho RA, Cavenee WK, D’Andrea A, Chen CC (2010) Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy. PLoS One 5:e10767

    PubMed  Google Scholar 

  176. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57

    PubMed  CAS  Google Scholar 

  177. Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558

    PubMed  CAS  Google Scholar 

  178. Uhrbom L, Nerio E, Holland EC (2004) Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nat Med 10:1257–1260

    PubMed  CAS  Google Scholar 

  179. Seidler B, Schmidt A, Mayr U, Nakhai H, Schmid RM, Schneider G, Saur D (2008) A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors. Proc Natl Acad Sci USA 105:10137–10142

    PubMed  CAS  Google Scholar 

  180. Pao W, Klimstra DS, Fisher GH, Varmus HE (2003) Use of avian retroviral vectors to introduce transcriptional regulators into mammalian cells for analyses of tumor maintenance. Proc Natl Acad Sci USA 100:8764–8769

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Swedish Cancer Society, the Swedish Childhood Cancer Foundation, the Swedish Research Council, and Ragnar Söderberg’s foundation. We thank Fredrik J Swartling for his insightful comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lindberg, N., Uhrbom, L. (2012). Oligodendroglioma Models. In: Martínez Murillo, R., Martínez, A. (eds) Animal Models of Brain Tumors. Neuromethods, vol 77. Humana Press, Totowa, NJ. https://doi.org/10.1007/7657_2012_35

Download citation

  • DOI: https://doi.org/10.1007/7657_2012_35

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-208-7

  • Online ISBN: 978-1-62703-209-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics