Skip to main content

Use of Dynamic-Clamp as a Tool to Reveal the Computational Properties of Single Neurons Embedded in Cortical Circuits

  • Protocol
  • First Online:
  • 1792 Accesses

Part of the book series: Neuromethods ((NM,volume 67))

Abstract

Dynamic clamp is a technique that combines computer modeling with experimental electrophysiology and is used to examine how specific ion channels modulate a variety of single-cell activities, by artificially emulating the response properties of specific ionic conductances during an electrophysiological recording. This is accomplished by continuously and instantaneously varying the current that is injected into a recorded neuron as a function of a computer-generated conductance and of the difference between its apparent reversal potential and the actual fluctuations of the membrane potential of the recorded cell. Dynamic clamp is often used to model voltage-independent, voltage-dependent, and synaptic ion currents and is very useful to study how cortical neurons compute and integrate diverse synaptic currents or sequences of synaptic inputs into specific spike-train outputs. Cortical networks are composed of highly heterogeneous cell types, and it is often difficult to dissect individual aspects of signal propagation between neurons and how they contribute to shape network activities underlying several cortical functions. Here, we describe some implementations of the dynamic clamp technique useful to studying the contribution of different elements of cortical circuits to the generation of single cell spike outputs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    http://www.incf.org.

  2. 2.

    http://www.analog.com/static/imported-files/data_sheets/AD834.pdf.

  3. 3.

    https://www.rtai.org/.

  4. 4.

    http://www.comedi.org/.

  5. 5.

    http://stg.rutgers.edu/software, http://stdpc.sourceforge.net, http://www.qub.buffalo.edu/wiki/index.php/Dynamic_Clamp.

  6. 6.

    http://www.hornlab.neurobio.pitt.edu/G%20clamp%20v2.html, http://www.rtxi.org, http://relacs.sourceforge.net.

  7. 7.

    http://www.rtxi.org.

  8. 8.

    http://cns.iaf.cnrs-gif.fr/hr-cortex.html, http://audition.ens.fr/brette/HRCORTEX/index.html.

References

  1. McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2:11–23

    Article  PubMed  CAS  Google Scholar 

  2. Markram H, Toledo-Rodriguez M, Wang Y et al (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  PubMed  CAS  Google Scholar 

  3. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    Article  PubMed  CAS  Google Scholar 

  4. Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486

    Article  PubMed  CAS  Google Scholar 

  5. Maccaferri G, Lacaille JC (2003) Interneuron diversity series: hippocampal interneuron classifications-making things as simple as possible, not simpler. Trends Neurosci 26:564–571

    Article  PubMed  CAS  Google Scholar 

  6. Ascoli GA, Alonso-Nanclares L, Anderson SA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568

    Article  PubMed  CAS  Google Scholar 

  7. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  8. Klausberger T, Magill PJ, Marton LF et al (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848

    Article  PubMed  CAS  Google Scholar 

  9. Hajos N, Palhalmi J, Mann EO et al (2004) Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J Neurosci 24:9127–9137

    Article  PubMed  CAS  Google Scholar 

  10. Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol (Lond) 562:9–26

    Article  CAS  Google Scholar 

  11. Jonas P, Bischofberger J, Fricker D, Miles R (2004) Interneuron diversity series: fast in, fast out-temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci 27:30–40

    Article  PubMed  CAS  Google Scholar 

  12. Freund TF (2003) Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci 26:489–495

    Article  PubMed  CAS  Google Scholar 

  13. Miles R, Toth K, Gulyas AI et al (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16:815–823

    Article  PubMed  CAS  Google Scholar 

  14. Freund TF, Katona I (2007) Perisomatic inhibition. Neuron 56:33–42

    Article  PubMed  CAS  Google Scholar 

  15. Reyes A, Lujan R, Rozov A, Burnashev N et al (1998) Target-cell-specific facilitation and depression in neocortical circuits. Nat Neurosci 1:279–285

    Article  PubMed  CAS  Google Scholar 

  16. Scanziani M, Gahwiler BH, Charpak S (1998) Target cell-specific modulation of transmitter release at terminals from a single axon. Proc Natl Acad Sci USA 95:12004–12009

    Article  PubMed  CAS  Google Scholar 

  17. Bacci A, Rudolph U, Huguenard JR, Prince DA (2003) Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses. J Neurosci 23:9664–9674

    PubMed  CAS  Google Scholar 

  18. Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90:2987–3000

    Article  PubMed  Google Scholar 

  19. Wainer BH, Bolam JP, Freund TF, Henderson Z et al (1984) Cholinergic synapses in the rat brain: a correlated light and electron microscopic immunohistochemical study employing a monoclonal antibody against choline acetyltransferase. Brain Res 308:69–76

    Article  PubMed  CAS  Google Scholar 

  20. McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806

    PubMed  CAS  Google Scholar 

  21. Destexhe A, Rudolph M, Pare D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739–751

    Article  PubMed  CAS  Google Scholar 

  22. Kondgen H, Geisler C, Fusi S et al (2008) The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. Cereb Cortex 18:2086–2097

    Article  PubMed  Google Scholar 

  23. Arsiero M, Luscher HR, Lundstrom BN, Giugliano M (2007) The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. J Neurosci 27:3274–3284

    Article  PubMed  CAS  Google Scholar 

  24. Martina M, Royer S, Pare D (2001) Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J Neurophysiol 86:2887–2895

    PubMed  CAS  Google Scholar 

  25. Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117

    Article  PubMed  CAS  Google Scholar 

  26. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56

    Article  PubMed  CAS  Google Scholar 

  27. Khirug S, Yamada J, Afzalov R et al (2008) GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1. J Neurosci 28:4635–4639

    Article  PubMed  CAS  Google Scholar 

  28. Szabadics J, Varga C, Molnar G et al (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311:233–235

    Article  PubMed  CAS  Google Scholar 

  29. Prinz AA, Abbott LF, Marder E (2004) The dynamic clamp comes of age. Trends Neurosci 27:218–224

    Article  PubMed  CAS  Google Scholar 

  30. Wilders R (2006) Dynamic clamp: a powerful tool in cardiac electrophysiology. J Physiol 576:349–359

    Article  PubMed  CAS  Google Scholar 

  31. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    Article  PubMed  CAS  Google Scholar 

  32. Nagtegaal AP, Borst JG (2010) In vivo dynamic clamp study of I(h) in the mouse inferior colliculus. J Neurophysiol 104:940–948

    Article  PubMed  CAS  Google Scholar 

  33. Bacci A, Huguenard JR (2006) Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons. Neuron 49:119–130

    Article  PubMed  CAS  Google Scholar 

  34. Wolfart J, Debay D, Le Masson G et al (2005) Synaptic background activity controls spike transfer from thalamus to cortex. Nat Neurosci 8:1760–1767

    Article  PubMed  CAS  Google Scholar 

  35. Wang DD, Kriegstein AR (2008) GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation. J Neurosci 28:5547–5558

    Article  PubMed  CAS  Google Scholar 

  36. Oprisan SA, Prinz AA, Canavier CC (2004) Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophys J 87:2283–2298

    Article  PubMed  CAS  Google Scholar 

  37. Le Masson G, Renaud-Le Masson S, Debay D, Bal T (2002) Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 417:854–858

    Article  PubMed  Google Scholar 

  38. Bucher D, Prinz AA, Marder E (2005) Animal-to-animal variability in motor pattern production in adults and during growth. J Neurosci 25:1611–1619

    Article  PubMed  CAS  Google Scholar 

  39. Sieling FH, Canavier CC, Prinz AA (2009) Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. J Neurophysiol 102:69–84

    Article  PubMed  Google Scholar 

  40. Castaneda-Castellanos DR, Flint AC, Kriegstein AR (2006) Blind patch clamp recordings in embryonic and adult mammalian brain slices. Nat Protoc 1:532–542

    Article  PubMed  CAS  Google Scholar 

  41. Sakmann B, Neher E (1995) Single-channel recording. Plenum, New York

    Google Scholar 

  42. Bischofberger J, Engel D, Li L, Geiger JR, Jonas P (2006) Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc 1:2075–2081

    Article  PubMed  CAS  Google Scholar 

  43. Davie JT, Kole MH, Letzkus JJ et al (2006) Dendritic patch-clamp recording. Nat Protoc 1:1235–1247

    Article  PubMed  CAS  Google Scholar 

  44. Debanne D, Boudkkazi S, Campanac E et al (2008) Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices. Nat Protoc 3:1559–1568

    Article  PubMed  CAS  Google Scholar 

  45. Destexhe A, Mainen Z, Sejnowski T (1998) Kinetic models of synaptic transmission. In: Segev I, Koch C (eds) Methods in neuronal modeling. MIT, Cambridge, MA, pp 1–25

    Google Scholar 

  46. Giugliano M, Bove M, Grattarola M (1999) Fast calculation of short-term depressing synaptic conductances. Neural Comput 11:1413–1426

    Article  PubMed  CAS  Google Scholar 

  47. Lytton WW (1996) Optimizing synaptic conductance calculation for network simulations. Neural Comput 8:501–509

    Article  PubMed  CAS  Google Scholar 

  48. Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13–24

    Article  PubMed  CAS  Google Scholar 

  49. Gillespie DT (1996) Exact numerical simulation of the Ornstein–Uhlenbeck process and its integral. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 54:2084–2091

    Article  PubMed  CAS  Google Scholar 

  50. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1993) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  51. Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382:807–810

    Article  PubMed  CAS  Google Scholar 

  52. Sharp AA, O'Neil MB, Abbott LF, Marder E (1993) Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol 69:992–995

    PubMed  CAS  Google Scholar 

  53. Robinson HP, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Methods 49:157–165

    Article  PubMed  CAS  Google Scholar 

  54. Kullmann PH, Wheeler DW, Beacom J, Horn JP (2004) Implementation of a fast 16-bit dynamic clamp using LabVIEW-RT. J Neurophysiol 91:542–554

    Article  PubMed  Google Scholar 

  55. Raikov I, Preyer A, Butera RJ (2004) MRCI: a flexible real-time dynamic clamp system for electrophysiology experiments. J Neurosci Methods 132:109–123

    Article  PubMed  Google Scholar 

  56. Rabbah P, Nadim F (2005) Synaptic dynamics do not determine proper phase of activity in a central pattern generator. J Neurosci 25:11269–11278

    Article  PubMed  CAS  Google Scholar 

  57. Nowotny T, Szucs A, Pinto RD, Selverston AI (2006) StdpC: a modern dynamic clamp. J Neurosci Methods 158:287–299

    Article  PubMed  Google Scholar 

  58. Milescu LS, Yamanishi T, Ptak K et al (2008) Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp. Biophys J 95:66–87

    Article  PubMed  CAS  Google Scholar 

  59. Benda J, Gollisch T, Machens CK, Herz AV (2007) From response to stimulus: adaptive sampling in sensory physiology. Curr Opin Neurobiol 17:430–436

    Article  PubMed  CAS  Google Scholar 

  60. Hughes SW, Lorincz M, Cope DW, Crunelli V (2008) NeuReal: an interactive simulation system for implementing artificial dendrites and large hybrid networks. J Neurosci Methods 169:290–301

    Article  PubMed  Google Scholar 

  61. Bjaalie JG, Grillner S (2007) Global neuroinformatics: the International Neuroinformatics Coordinating Facility. J Neurosci 27:3613–3615

    Article  PubMed  CAS  Google Scholar 

  62. Molleman A (2003) Patch-clamping: an introductory guide to patch clamp electrophysiology. Wiley, New York

    Google Scholar 

  63. Geddes LA (1972) Electrodes and the measurement of bioelectric events. Wiley, New York

    Google Scholar 

  64. Wilson CJ, Park MR (1989) Capacitance compensation and bridge balance adjustment in intracellular recording from dendritic neurons. J Neurosci Methods 27:51–75

    Article  PubMed  CAS  Google Scholar 

  65. Badel L, Lefort S, Brette R et al (2008) Dynamic I–V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol 99:656–666

    Article  PubMed  Google Scholar 

  66. Brette R, Piwkowska Z, Monier C et al (2008) High-resolution intracellular recordings using a real-time computational model of the electrode. Neuron 59:379–391

    Article  PubMed  CAS  Google Scholar 

  67. Preyer AJ, Butera RJ (2009) Causes of transient instabilities in the dynamic clamp. IEEE Trans Neural Syst Rehabil Eng 17:190–198

    Article  PubMed  Google Scholar 

  68. Okun M, Naim A, Lampl I (2010) The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci 30:4440–4448

    Article  PubMed  CAS  Google Scholar 

  69. Varela C, Llano DA, Theyel BB “An Introduction to in vitro slice approaches for the study of neuronal circuitry” in Neuronal network analysis: concepts and experimental approaches, Neuromethods Book Series, Springer

    Google Scholar 

  70. Zrenner C, Eytan D, Wallach A, Thier P, Marom S (2010) A generic framework for real-time multi-channel neuronal signal analysis, telemetry control and sub-millisecond latency feedback generation. Front. Neurosci. 4:173

    Google Scholar 

Download references

Acknowledgments

We thank Pablo Méndez, Simone Pacioni, and Silvia Marinelli for critically reading the manuscript. This work was supported by the Giovanni Armenise-Harvard Foundation: Career Development Award (A. Bacci); European Commission: Marie Curie International Reintegration Grant (A. Bacci); European Research Council (ERC) under the European Community’s 7th Framework Program (FP7/2007-2013)/ERC grant agreement No 200808; the Belgian InterUniversity Attraction Pole (grant n. IUAP P6/29, M. Giugliano), the University of Antwerp (NOI-BOF2009, M. Giugliano), the Flanders Research Foundation (grant n. G.0836.09, M. Giugliano), and the Royal Society (2009/R4, M. Giugliano); A. Bacci is the 2007/2008 NARSAD Henry and William Test Investigator and M. Giugliano is the Emilie Francqui Foundation Professor.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bacci, A., Pazienti, A., Giugliano, M. (2011). Use of Dynamic-Clamp as a Tool to Reveal the Computational Properties of Single Neurons Embedded in Cortical Circuits. In: Fellin, T., Halassa, M. (eds) Neuronal Network Analysis. Neuromethods, vol 67. Humana Press. https://doi.org/10.1007/7657_2011_5

Download citation

  • DOI: https://doi.org/10.1007/7657_2011_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-632-6

  • Online ISBN: 978-1-61779-633-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics