Advertisement

Use of Dynamic-Clamp as a Tool to Reveal the Computational Properties of Single Neurons Embedded in Cortical Circuits

  • Alberto Bacci
  • Antonio Pazienti
  • Michele Giugliano
Protocol
Part of the Neuromethods book series (NM, volume 67)

Abstract

Dynamic clamp is a technique that combines computer modeling with experimental electrophysiology and is used to examine how specific ion channels modulate a variety of single-cell activities, by artificially emulating the response properties of specific ionic conductances during an electrophysiological recording. This is accomplished by continuously and instantaneously varying the current that is injected into a recorded neuron as a function of a computer-generated conductance and of the difference between its apparent reversal potential and the actual fluctuations of the membrane potential of the recorded cell. Dynamic clamp is often used to model voltage-independent, voltage-dependent, and synaptic ion currents and is very useful to study how cortical neurons compute and integrate diverse synaptic currents or sequences of synaptic inputs into specific spike-train outputs. Cortical networks are composed of highly heterogeneous cell types, and it is often difficult to dissect individual aspects of signal propagation between neurons and how they contribute to shape network activities underlying several cortical functions. Here, we describe some implementations of the dynamic clamp technique useful to studying the contribution of different elements of cortical circuits to the generation of single cell spike outputs.

Key words

Cortical networks Dynamic clamp Electrophysiology Synaptic transmission 

Notes

Acknowledgments

We thank Pablo Méndez, Simone Pacioni, and Silvia Marinelli for critically reading the manuscript. This work was supported by the Giovanni Armenise-Harvard Foundation: Career Development Award (A. Bacci); European Commission: Marie Curie International Reintegration Grant (A. Bacci); European Research Council (ERC) under the European Community’s 7th Framework Program (FP7/2007-2013)/ERC grant agreement No 200808; the Belgian InterUniversity Attraction Pole (grant n. IUAP P6/29, M. Giugliano), the University of Antwerp (NOI-BOF2009, M. Giugliano), the Flanders Research Foundation (grant n. G.0836.09, M. Giugliano), and the Royal Society (2009/R4, M. Giugliano); A. Bacci is the 2007/2008 NARSAD Henry and William Test Investigator and M. Giugliano is the Emilie Francqui Foundation Professor.

References

  1. 1.
    McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2:11–23PubMedCrossRefGoogle Scholar
  2. 2.
    Markram H, Toledo-Rodriguez M, Wang Y et al (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807PubMedCrossRefGoogle Scholar
  3. 3.
    Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57PubMedCrossRefGoogle Scholar
  4. 4.
    Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486PubMedCrossRefGoogle Scholar
  5. 5.
    Maccaferri G, Lacaille JC (2003) Interneuron diversity series: hippocampal interneuron classifications-making things as simple as possible, not simpler. Trends Neurosci 26:564–571PubMedCrossRefGoogle Scholar
  6. 6.
    Ascoli GA, Alonso-Nanclares L, Anderson SA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568PubMedCrossRefGoogle Scholar
  7. 7.
    Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470PubMedCrossRefGoogle Scholar
  8. 8.
    Klausberger T, Magill PJ, Marton LF et al (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848PubMedCrossRefGoogle Scholar
  9. 9.
    Hajos N, Palhalmi J, Mann EO et al (2004) Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J Neurosci 24:9127–9137PubMedCrossRefGoogle Scholar
  10. 10.
    Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol (Lond) 562:9–26CrossRefGoogle Scholar
  11. 11.
    Jonas P, Bischofberger J, Fricker D, Miles R (2004) Interneuron diversity series: fast in, fast out-temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci 27:30–40PubMedCrossRefGoogle Scholar
  12. 12.
    Freund TF (2003) Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci 26:489–495PubMedCrossRefGoogle Scholar
  13. 13.
    Miles R, Toth K, Gulyas AI et al (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16:815–823PubMedCrossRefGoogle Scholar
  14. 14.
    Freund TF, Katona I (2007) Perisomatic inhibition. Neuron 56:33–42PubMedCrossRefGoogle Scholar
  15. 15.
    Reyes A, Lujan R, Rozov A, Burnashev N et al (1998) Target-cell-specific facilitation and depression in neocortical circuits. Nat Neurosci 1:279–285PubMedCrossRefGoogle Scholar
  16. 16.
    Scanziani M, Gahwiler BH, Charpak S (1998) Target cell-specific modulation of transmitter release at terminals from a single axon. Proc Natl Acad Sci USA 95:12004–12009PubMedCrossRefGoogle Scholar
  17. 17.
    Bacci A, Rudolph U, Huguenard JR, Prince DA (2003) Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses. J Neurosci 23:9664–9674PubMedGoogle Scholar
  18. 18.
    Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90:2987–3000PubMedCrossRefGoogle Scholar
  19. 19.
    Wainer BH, Bolam JP, Freund TF, Henderson Z et al (1984) Cholinergic synapses in the rat brain: a correlated light and electron microscopic immunohistochemical study employing a monoclonal antibody against choline acetyltransferase. Brain Res 308:69–76PubMedCrossRefGoogle Scholar
  20. 20.
    McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806PubMedGoogle Scholar
  21. 21.
    Destexhe A, Rudolph M, Pare D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739–751PubMedCrossRefGoogle Scholar
  22. 22.
    Kondgen H, Geisler C, Fusi S et al (2008) The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. Cereb Cortex 18:2086–2097PubMedCrossRefGoogle Scholar
  23. 23.
    Arsiero M, Luscher HR, Lundstrom BN, Giugliano M (2007) The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. J Neurosci 27:3274–3284PubMedCrossRefGoogle Scholar
  24. 24.
    Martina M, Royer S, Pare D (2001) Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J Neurophysiol 86:2887–2895PubMedGoogle Scholar
  25. 25.
    Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117PubMedCrossRefGoogle Scholar
  26. 26.
    Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56PubMedCrossRefGoogle Scholar
  27. 27.
    Khirug S, Yamada J, Afzalov R et al (2008) GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1. J Neurosci 28:4635–4639PubMedCrossRefGoogle Scholar
  28. 28.
    Szabadics J, Varga C, Molnar G et al (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311:233–235PubMedCrossRefGoogle Scholar
  29. 29.
    Prinz AA, Abbott LF, Marder E (2004) The dynamic clamp comes of age. Trends Neurosci 27:218–224PubMedCrossRefGoogle Scholar
  30. 30.
    Wilders R (2006) Dynamic clamp: a powerful tool in cardiac electrophysiology. J Physiol 576:349–359PubMedCrossRefGoogle Scholar
  31. 31.
    Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702PubMedCrossRefGoogle Scholar
  32. 32.
    Nagtegaal AP, Borst JG (2010) In vivo dynamic clamp study of I(h) in the mouse inferior colliculus. J Neurophysiol 104:940–948PubMedCrossRefGoogle Scholar
  33. 33.
    Bacci A, Huguenard JR (2006) Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons. Neuron 49:119–130PubMedCrossRefGoogle Scholar
  34. 34.
    Wolfart J, Debay D, Le Masson G et al (2005) Synaptic background activity controls spike transfer from thalamus to cortex. Nat Neurosci 8:1760–1767PubMedCrossRefGoogle Scholar
  35. 35.
    Wang DD, Kriegstein AR (2008) GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation. J Neurosci 28:5547–5558PubMedCrossRefGoogle Scholar
  36. 36.
    Oprisan SA, Prinz AA, Canavier CC (2004) Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophys J 87:2283–2298PubMedCrossRefGoogle Scholar
  37. 37.
    Le Masson G, Renaud-Le Masson S, Debay D, Bal T (2002) Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 417:854–858PubMedCrossRefGoogle Scholar
  38. 38.
    Bucher D, Prinz AA, Marder E (2005) Animal-to-animal variability in motor pattern production in adults and during growth. J Neurosci 25:1611–1619PubMedCrossRefGoogle Scholar
  39. 39.
    Sieling FH, Canavier CC, Prinz AA (2009) Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. J Neurophysiol 102:69–84PubMedCrossRefGoogle Scholar
  40. 40.
    Castaneda-Castellanos DR, Flint AC, Kriegstein AR (2006) Blind patch clamp recordings in embryonic and adult mammalian brain slices. Nat Protoc 1:532–542PubMedCrossRefGoogle Scholar
  41. 41.
    Sakmann B, Neher E (1995) Single-channel recording. Plenum, New YorkGoogle Scholar
  42. 42.
    Bischofberger J, Engel D, Li L, Geiger JR, Jonas P (2006) Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc 1:2075–2081PubMedCrossRefGoogle Scholar
  43. 43.
    Davie JT, Kole MH, Letzkus JJ et al (2006) Dendritic patch-clamp recording. Nat Protoc 1:1235–1247PubMedCrossRefGoogle Scholar
  44. 44.
    Debanne D, Boudkkazi S, Campanac E et al (2008) Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices. Nat Protoc 3:1559–1568PubMedCrossRefGoogle Scholar
  45. 45.
    Destexhe A, Mainen Z, Sejnowski T (1998) Kinetic models of synaptic transmission. In: Segev I, Koch C (eds) Methods in neuronal modeling. MIT, Cambridge, MA, pp 1–25Google Scholar
  46. 46.
    Giugliano M, Bove M, Grattarola M (1999) Fast calculation of short-term depressing synaptic conductances. Neural Comput 11:1413–1426PubMedCrossRefGoogle Scholar
  47. 47.
    Lytton WW (1996) Optimizing synaptic conductance calculation for network simulations. Neural Comput 8:501–509PubMedCrossRefGoogle Scholar
  48. 48.
    Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13–24PubMedCrossRefGoogle Scholar
  49. 49.
    Gillespie DT (1996) Exact numerical simulation of the Ornstein–Uhlenbeck process and its integral. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 54:2084–2091PubMedCrossRefGoogle Scholar
  50. 50.
    Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1993) Numerical recipes in C: the art of scientific computing. Cambridge University Press, CambridgeGoogle Scholar
  51. 51.
    Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382:807–810PubMedCrossRefGoogle Scholar
  52. 52.
    Sharp AA, O'Neil MB, Abbott LF, Marder E (1993) Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol 69:992–995PubMedGoogle Scholar
  53. 53.
    Robinson HP, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Methods 49:157–165PubMedCrossRefGoogle Scholar
  54. 54.
    Kullmann PH, Wheeler DW, Beacom J, Horn JP (2004) Implementation of a fast 16-bit dynamic clamp using LabVIEW-RT. J Neurophysiol 91:542–554PubMedCrossRefGoogle Scholar
  55. 55.
    Raikov I, Preyer A, Butera RJ (2004) MRCI: a flexible real-time dynamic clamp system for electrophysiology experiments. J Neurosci Methods 132:109–123PubMedCrossRefGoogle Scholar
  56. 56.
    Rabbah P, Nadim F (2005) Synaptic dynamics do not determine proper phase of activity in a central pattern generator. J Neurosci 25:11269–11278PubMedCrossRefGoogle Scholar
  57. 57.
    Nowotny T, Szucs A, Pinto RD, Selverston AI (2006) StdpC: a modern dynamic clamp. J Neurosci Methods 158:287–299PubMedCrossRefGoogle Scholar
  58. 58.
    Milescu LS, Yamanishi T, Ptak K et al (2008) Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp. Biophys J 95:66–87PubMedCrossRefGoogle Scholar
  59. 59.
    Benda J, Gollisch T, Machens CK, Herz AV (2007) From response to stimulus: adaptive sampling in sensory physiology. Curr Opin Neurobiol 17:430–436PubMedCrossRefGoogle Scholar
  60. 60.
    Hughes SW, Lorincz M, Cope DW, Crunelli V (2008) NeuReal: an interactive simulation system for implementing artificial dendrites and large hybrid networks. J Neurosci Methods 169:290–301PubMedCrossRefGoogle Scholar
  61. 61.
    Bjaalie JG, Grillner S (2007) Global neuroinformatics: the International Neuroinformatics Coordinating Facility. J Neurosci 27:3613–3615PubMedCrossRefGoogle Scholar
  62. 62.
    Molleman A (2003) Patch-clamping: an introductory guide to patch clamp electrophysiology. Wiley, New YorkGoogle Scholar
  63. 63.
    Geddes LA (1972) Electrodes and the measurement of bioelectric events. Wiley, New YorkGoogle Scholar
  64. 64.
    Wilson CJ, Park MR (1989) Capacitance compensation and bridge balance adjustment in intracellular recording from dendritic neurons. J Neurosci Methods 27:51–75PubMedCrossRefGoogle Scholar
  65. 65.
    Badel L, Lefort S, Brette R et al (2008) Dynamic I–V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol 99:656–666PubMedCrossRefGoogle Scholar
  66. 66.
    Brette R, Piwkowska Z, Monier C et al (2008) High-resolution intracellular recordings using a real-time computational model of the electrode. Neuron 59:379–391PubMedCrossRefGoogle Scholar
  67. 67.
    Preyer AJ, Butera RJ (2009) Causes of transient instabilities in the dynamic clamp. IEEE Trans Neural Syst Rehabil Eng 17:190–198PubMedCrossRefGoogle Scholar
  68. 68.
    Okun M, Naim A, Lampl I (2010) The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci 30:4440–4448PubMedCrossRefGoogle Scholar
  69. 69.
    Varela C, Llano DA, Theyel BB “An Introduction to in vitro slice approaches for the study of neuronal circuitry” in Neuronal network analysis: concepts and experimental approaches, Neuromethods Book Series, SpringerGoogle Scholar
  70. 70.
    Zrenner C, Eytan D, Wallach A, Thier P, Marom S (2010) A generic framework for real-time multi-channel neuronal signal analysis, telemetry control and sub-millisecond latency feedback generation. Front. Neurosci. 4:173Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alberto Bacci
    • 1
  • Antonio Pazienti
    • 1
  • Michele Giugliano
    • 2
    • 3
    • 4
  1. 1.European Brain Research InstituteRomeItaly
  2. 2.Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
  3. 3.Brain Mind InstituteSwiss Federal Institute of TechnologyLausanneSwitzerland
  4. 4.Department of Computer ScienceUniversity of SheffieldSheffieldUK

Personalised recommendations