Advertisement

Extracellular Recordings of Synaptic Plasticity and Network Oscillations in Hippocampal Slices

  • Gaga Kochlamazashvili
  • Oleg Senkov
  • Alexander Dityatev
Protocol
Part of the Neuromethods book series (NM, volume 67)

Abstract

Activity-dependent strengthening and weakening of synaptic weights, manifested as long-term potentiation (LTP) and depression (LTD), are two major mechanisms that are thought to be involved in creating memory traces in the brain. Oscillations of neuronal activity, especially in the θ (4–12 Hz), γ (30–100 Hz), and “ripple” (130–200 Hz) frequency bands, are also fundamental phenomena that are believed to contribute to learning and memory. However, the interplay between oscillations and plasticity is still not understood. These brain phenomena are rarely considered together when synaptic plasticity is studied. In this chapter, we summarize the existing knowledge in the field, describe protocols that can be used to induce LTP in seven major excitatory synaptic pathways in hippocampal slices, and introduce a procedure to investigate synaptic plasticity and induce high-frequency oscillations under one experimental paradigm.

Key words

LTP LTD Synaptic plasticity Learning Theta Gamma Oscillation 

Notes

Acknowledgments

This work was supported by Italian Institute of Technology and by grants from the Deutsche Forschungsgemeinschaft (DI 702/6-1 to A.D.) and the San Paolo “Programma in Neuroscienze” (to A.D.).

References

  1. 1.
    Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356PubMedGoogle Scholar
  2. 2.
    Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136PubMedCrossRefGoogle Scholar
  3. 3.
    Andersen P, Morris R, Amaral D et al (2007) The hippocampus book. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Chapman PF, Kairiss EW, Keenan CL et al (1990) Long-term synaptic potentiation in the amygdala. Synapse 6(3):271–278PubMedCrossRefGoogle Scholar
  5. 5.
    Rogan MT, Stäubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390(6660):604–607PubMedCrossRefGoogle Scholar
  6. 6.
    Dityatev AE, Bolshakov VY (2005) Amygdala, long-term potentiation, and fear conditioning. Neuroscientist 11(1):75–88PubMedCrossRefGoogle Scholar
  7. 7.
    Crepel F, Jaillard D (1991) Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. J Physiol 432:123–141PubMedGoogle Scholar
  8. 8.
    Jörntell H, Hansel C (2006) Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 52(2):227–238PubMedCrossRefGoogle Scholar
  9. 9.
    Laroche S, Jay TM, Thierry AM (1990) Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region. Neurosci Lett 114(2):184–190PubMedCrossRefGoogle Scholar
  10. 10.
    Alonso A, de Curtis M, Llinás R (1990) Postsynaptic Hebbian and non-Hebbian long-term potentiation of synaptic efficacy in the entorhinal cortex in slices and in the isolated adult guinea pig brain. Proc Natl Acad Sci U S A 87(23):9280–9284PubMedCrossRefGoogle Scholar
  11. 11.
    Artola A, Singer W (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330(6149):649–652PubMedCrossRefGoogle Scholar
  12. 12.
    Iriki A, Pavlides C, Keller A et al (1989) Long-term potentiation in the motor cortex. Science 245(4924):1385–1387PubMedCrossRefGoogle Scholar
  13. 13.
    Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–113PubMedCrossRefGoogle Scholar
  14. 14.
    Engel AK, Moll CK, Fried I et al (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6(1):35–47PubMedCrossRefGoogle Scholar
  15. 15.
    Buzsáki G (2006) Rhythms in the brain. Oxford University Press, New YorkCrossRefGoogle Scholar
  16. 16.
    Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33(3):325–340PubMedCrossRefGoogle Scholar
  17. 17.
    Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451PubMedCrossRefGoogle Scholar
  18. 18.
    Lisman J, Buzsáki G (2008) A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr Bull 34(5):974–980PubMedCrossRefGoogle Scholar
  19. 19.
    Buzsàki G, Eidelberg E (1983) Phase relations of hippocampal projection cells and interneurons to theta activity in the anesthetized rat. Brain Res 266(2):334–339PubMedCrossRefGoogle Scholar
  20. 20.
    O’Keefe J (1993) Hippocampus, theta, and spatial memory. Curr Opin Neurobiol 3(6):917–924PubMedCrossRefGoogle Scholar
  21. 21.
    Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci 31:69–89PubMedCrossRefGoogle Scholar
  22. 22.
    Winson J (1978) Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 201(4351):160–163PubMedCrossRefGoogle Scholar
  23. 23.
    Bikbaev A, Manahan-Vaughan D (2007) Hippocampal network activity is transiently altered by induction of long-term potentiation in the dentate gyrus of freely behaving rats. Front Behav Neurosci 1:7PubMedCrossRefGoogle Scholar
  24. 24.
    Bikbaev A, Manahan-Vaughan D (2008) Relationship of hippocampal theta and gamma oscillations to potentiation of synaptic transmission. Front Neurosci 2(1):56–63PubMedCrossRefGoogle Scholar
  25. 25.
    Hyman JM, Wyble BP, Goyal V et al (2003) Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J Neurosci 23(37):11725–11731PubMedGoogle Scholar
  26. 26.
    Hölscher C, Anwyl R, Rowan MJ (1997) Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo. J Neurosci 17(16):6470–6473PubMedGoogle Scholar
  27. 27.
    Pavlides C, Greenstein YJ, Grudman M (1988) Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. Brain Res 439(1–2):383–387PubMedCrossRefGoogle Scholar
  28. 28.
    Greenstein YJ, Pavlides C, Winson J (1988) Long-term potentiation in the dentate gyrus is preferentially induced at theta rhythm periodicity. Brain Res 438(1–2):331–334PubMedCrossRefGoogle Scholar
  29. 29.
    Orr G, Rao G, Houston FP et al (2001) Hippocampal synaptic plasticity is modulated by theta rhythm in the fascia dentata of adult and aged freely behaving rats. Hippocampus 11(6):647–654PubMedCrossRefGoogle Scholar
  30. 30.
    Poe GR, Nitz DA, McNaughton BL et al (2000) Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res 855(1):176–180PubMedCrossRefGoogle Scholar
  31. 31.
    Huerta PT, Lisman JE (1995) Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 15(5):1053–1063PubMedCrossRefGoogle Scholar
  32. 32.
    Huerta PT, Lisman JE (1993) Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364(6439):723–725PubMedCrossRefGoogle Scholar
  33. 33.
    Hájos N, Pálhalmi J, Mann EO et al (2004) Spike timing of distinct types of GABAergic interneuron during hippocampal gammaγ oscillations in vitro. J Neurosci 24(41):9127–9137PubMedCrossRefGoogle Scholar
  34. 34.
    Csicsvari J, Jamieson B, Wise KD et al (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37(2):311–322PubMedCrossRefGoogle Scholar
  35. 35.
    Traub RD, Whittington MA, Colling SB et al (1996) Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J Physiol 493(Pt 2):471–484PubMedGoogle Scholar
  36. 36.
    Pöschel B, Heinemann U, Draguhn A (2003) High frequency oscillations in the dentate gyrus of rat hippocampal slices induced by tetanic stimulation. Brain Res 959(2):320–327PubMedCrossRefGoogle Scholar
  37. 37.
    Goutagny R, Jackson J, Williams S (2009) Self-generated theta oscillations in the hippocampus. Nat Neurosci 12(12):1491–1493PubMedCrossRefGoogle Scholar
  38. 38.
    Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586PubMedCrossRefGoogle Scholar
  39. 39.
    Colgin LL, Denninger T, Fyhn M et al (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462(7271):353–357PubMedCrossRefGoogle Scholar
  40. 40.
    Wespatat V, Tennigkeit F, Singer W (2004) Phase sensitivity of synaptic modifications in oscillating cells of rat visual cortex. J Neurosci 24(41):9067–9075PubMedCrossRefGoogle Scholar
  41. 41.
    Morellini F, Lepsveridze E, Kähler B et al (2007) Reduced reactivity to novelty, impaired social behavior, and enhanced basal synaptic excitatory activity in perforant path projections to the dentate gyrus in young adult mice deficient in the neural cell adhesion molecule CHL1. Mol Cell Neurosci 34(2):121–136PubMedCrossRefGoogle Scholar
  42. 42.
    Kochlamazashvili G, Senkov O, Grebenyuk S et al (2010) Neural cell adhesion molecule-associated polysialic acid regulates synaptic plasticity and learning by restraining the signaling through GluN2B-containing NMDA receptors. J Neurosci 30(11):4171–4183PubMedCrossRefGoogle Scholar
  43. 43.
    Claiborne BJ, Xiang Z, Brown TH (1993) Hippocampal circuitry complicates analysis of long-term potentiation in mossy fiber synapses. Hippocampus 3(2):115–121PubMedCrossRefGoogle Scholar
  44. 44.
    Eckhardt M, Bukalo O, Chazal G et al (2000) Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J Neurosci 20(14):5234–5244PubMedGoogle Scholar
  45. 45.
    Muller D, Wang C, Skibo G et al (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17(3):413–422PubMedCrossRefGoogle Scholar
  46. 46.
    Remondes M, Schuman EM (2003) Molecular mechanisms contributing to long-lasting synaptic plasticity at the temporoammonic-CA1 synapse. Learn Mem 10(4):247–252PubMedCrossRefGoogle Scholar
  47. 47.
    Evers MR, Salmen B, Bukalo O et al (2002) Impairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C. J Neurosci 22(16):7177–7194PubMedGoogle Scholar
  48. 48.
    Hanse E, Gustafsson B (1992) Long-term potentiation and field EPSPs in the lateral and medial perforant paths in the dentate gyrus in vitro: a comparison. Eur J Neurosci 4(11):1191–1201PubMedCrossRefGoogle Scholar
  49. 49.
    Berzhanskaya J, Urban NN, Barrionuevo G (1998) Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3. J Neurophysiol 79(4):2111–2118PubMedGoogle Scholar
  50. 50.
    Bukalo O, Fentrop N, Lee AY et al (2004) Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J Neurosci 24(7):1565–1577PubMedCrossRefGoogle Scholar
  51. 51.
    Cremer H, Chazal G, Carleton A et al (1998) Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice. Proc Natl Acad Sci U S A 95(22):13242–13247PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gaga Kochlamazashvili
    • 1
  • Oleg Senkov
    • 2
  • Alexander Dityatev
    • 2
  1. 1.Department of Neuroscience and Brain TechnologiesItalian Institute of TechnologyGenoaItaly
  2. 2.Department of Clinical NeurobiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations