Skip to main content

Rodent Glioma Models: Intracranial Stereotactic Allografts and Xenografts

  • Protocol
  • First Online:
Animal Models of Brain Tumors

Part of the book series: Neuromethods ((NM,volume 77))

Abstract

Modeling human disease in small animals has been fundamental in advancing our scientific knowledge and for the development of novel therapeutic strategies. In the case of brain cancer, implantable tumor models, both intracranial and also in the periphery, have been widely used and extensively characterized. These models can be used to better understand certain aspects of tumor biology such as growth, neovascularization, response to potential therapies, and interaction with the immune system. Brain tumors from patients as well as rodents have been cultured in vitro, in an attempt to establish permanent cell lines. Human glioma tumors have also been maintained by serial passage in the flanks of immune-deficient animals, as it has been shown that it is not feasible to continuously passage them in culture. In this chapter, we describe various gliomas that have been isolated from mice, rats, and humans and subsequently used as syngeneic or xenograft tumor models in vivo. The majority of the models that we present in this chapter arose either spontaneously or by administration of chemical carcinogens. We compare and contrast the histopathological, genetic, and invasive features of the tumor lines as well as identify novel treatment modalities that have been developed. Finally, we present the procedures for intracranial implantation of tumor cells in rodents using stereotactic surgical techniques. The use of this technique enables the generation of large numbers of animals harboring intracranial tumors with relative ease and the survival of tumor-bearing animals is highly reproducible. These characteristics make the use of these in vivo models very attractive when aiming to develop and test the effectiveness of novel anticancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burger PC, Green SB (1987) Patient age, histologic features, and length of survival in patients with glioblastoma multiforme. Cancer 59:1617–1625

    Article  PubMed  CAS  Google Scholar 

  2. Bilzer T, Reifenberger G, Wechsler W (1989) Chemical induction of brain tumors in rats by nitrosoureas: molecular biology and neuropathology. Neurotoxicol Teratol 11:551–556

    Article  PubMed  CAS  Google Scholar 

  3. Bulnes-Sesma S, Ullibarri-Ortiz de Zarate N, Lafuente-Sanchez JV (2006) Tumour induction by ethylnitrosourea in the central nervous system. Rev Neurol 43:733–738

    PubMed  CAS  Google Scholar 

  4. Bosch DA (1977) Short and long term effects of methyl- and ethylnitrosourea (MNU & ENU) on the developing nervous system of the rat. I. Long term effects: the induction of (multiple) gliomas. Acta Neurol Scand 55:85–105

    Article  PubMed  CAS  Google Scholar 

  5. Assanah M, Lochhead R, Ogden A et al (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26:6781–6790

    Article  PubMed  CAS  Google Scholar 

  6. Copeland DD, Talley FA, Bigner DD (1976) The fine structure of intracranial neoplasms induced by the inoculation of avian sarcoma virus in neonatal and adult rats. Am J Pathol 83:149–176

    PubMed  CAS  Google Scholar 

  7. Steinbok P, Mahaley MS, U R et al (1979) Synergism between BCNU and irradiation in the treatment of anaplastic gliomas. An in vivo study using the avian sarcoma virus-induced glioma model. J Neurosurg 51:581–586

    Article  PubMed  CAS  Google Scholar 

  8. Holland EC, Varmus HE (1998) Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci U S A 95:1218–1223

    Article  PubMed  CAS  Google Scholar 

  9. Dai C, Celestino JC, Okada Y et al (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925

    Article  PubMed  CAS  Google Scholar 

  10. Hu X, Pandolfi PP, Li Y et al (2005) mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 7:356–368

    Article  PubMed  CAS  Google Scholar 

  11. Uhrbom L, Hesselager G, Nister M et al (1998) Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58:5275–5279

    PubMed  CAS  Google Scholar 

  12. Ivics Z, Hackett PB, Plasterk RH et al (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  PubMed  CAS  Google Scholar 

  13. Wiesner SM, Decker SA, Larson JD et al (2009) De novo induction of genetically engineered brain tumors in mice using plasmid DNA. Cancer Res 69:431–439

    Article  PubMed  CAS  Google Scholar 

  14. de Bouard S, Herlin P, Christensen JG et al (2007) Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro Oncol 9:412–423

    Article  PubMed  Google Scholar 

  15. Dinca EB, Lu KV, Sarkaria JN et al (2008) p53 Small-molecule inhibitor enhances temozolomide cytotoxic activity against intracranial glioblastoma xenografts. Cancer Res 68:10034–10039

    Article  PubMed  CAS  Google Scholar 

  16. Harding TC, Lalani AS, Roberts BN et al (2006) AAV serotype 8-mediated gene delivery of a soluble VEGF receptor to the CNS for the treatment of glioblastoma. Mol Ther 13:956–966

    Article  PubMed  CAS  Google Scholar 

  17. Kitange GJ, Carlson BL, Schroeder MA et al (2009) Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol 11:281–291

    Article  PubMed  CAS  Google Scholar 

  18. Kitange GJ, Carlson BL, Mladek AC et al (2009) Evaluation of MGMT promoter methylation status and correlation with temozolomide response in orthotopic glioblastoma xenograft model. J Neurooncol 92:23–31

    Article  PubMed  CAS  Google Scholar 

  19. Giannini C, Sarkaria JN, Saito A et al (2005) Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol 7:164–176

    Article  PubMed  CAS  Google Scholar 

  20. Sarkaria JN, Yang L, Grogan PT et al (2007) Identification of molecular characteristics correlated with glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft test panel. Mol Cancer Ther 6:1167–1174

    Article  PubMed  CAS  Google Scholar 

  21. Xie Q, Thompson R, Hardy K et al (2008) A highly invasive human glioblastoma pre-clinical model for testing therapeutics. J Transl Med 6:77

    Article  PubMed  Google Scholar 

  22. Candolfi M, Curtin JF, Nichols WS et al (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 85:133–148

    Article  PubMed  Google Scholar 

  23. Candolfi M, Curtin JF, Yagiz K et al (2011) B cells are critical to T-cell mediated anti-tumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma. Neoplasia 13(10):947–960

    PubMed  CAS  Google Scholar 

  24. Ghulam Muhammad AK, Candolfi M, King GD et al (2009) Antiglioma immunological memory in response to conditional cytotoxic/immune-stimulatory gene therapy: humoral and cellular immunity lead to tumor regression. Clin Cancer Res 15:6113–6127

    Article  PubMed  CAS  Google Scholar 

  25. Carlson BL, Grogan PT, Mladek AC et al (2009) Radiosensitizing effects of temozolomide observed in vivo only in a subset of O6-methylguanine-DNA methyltransferase methylated glioblastoma multiforme xenografts. Int J Radiat Oncol Biol Phys 75:212–219

    Article  PubMed  CAS  Google Scholar 

  26. Carlson BL, Pokorny JL, Schroeder MA, et al (2011) Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery. Current protocols in pharmacology/editorial board, S.J. Enna Chapter 14, Unit 14 16-23

  27. Candolfi M, Xiong W, Yagiz K et al (2010) Gene therapy-mediated delivery of targeted cytotoxins for glioma therapeutics. Proc Natl Acad Sci U S A 107:20021–20026

    Article  PubMed  CAS  Google Scholar 

  28. Curtin JF, Liu N, Candolfi M et al (2009) HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 6:e10

    Article  PubMed  Google Scholar 

  29. Ryu CH, Park SH, Park SA et al (2011) Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum Gene Ther 22:733–743

    Article  PubMed  CAS  Google Scholar 

  30. Serano RD, Pegram CN, Bigner DD (1980) Tumorigenic cell culture lines from a spontaneous VM/Dk murine astrocytoma (SMA). Acta Neuropathol 51:53–64

    Article  PubMed  CAS  Google Scholar 

  31. Sampson JH, Ashley DM, Archer GE et al (1997) Characterization of a spontaneous murine astrocytoma and abrogation of its tumorigenicity by cytokine secretion. Neurosurgery 41:1365–1372, discussion 1372–1373

    Article  PubMed  CAS  Google Scholar 

  32. Tran T-T, Uhl M, Ma JY et al (2007) Inhibiting TGF-beta signaling restores immune surveillance in the SMA-560 glioma model. Neuro Oncol 9:259–270

    Article  PubMed  CAS  Google Scholar 

  33. Miller J, Eisele G, Tabatabai G et al (2010) Soluble CD70: a novel immunotherapeutic agent for experimental glioblastoma. J Neurosurg 113:280–285

    Article  PubMed  CAS  Google Scholar 

  34. Briles EB, Kornfeld S (1978) Isolation and metastatic properties of detachment variants of B16 melanoma cells. J Natl Cancer Inst 60:1217–1222

    PubMed  CAS  Google Scholar 

  35. Wosko TJ, Ferrara DT, Sartori LS (1984) Histological comparison of the B16 melanoma and its F1 variant. Cancer Lett 24:57–63

    Article  PubMed  CAS  Google Scholar 

  36. Adatia R, Albini A, Carlone S et al (1997) Suppression of invasive behavior of melanoma cells by stable expression of anti-sense perlecan cDNA. Ann Oncol 8:1257–1261

    Article  PubMed  CAS  Google Scholar 

  37. Kirkwood JM, Tarhini AA, Panelli MC et al (2008) Next generation of immunotherapy for melanoma. J Clin Oncol 26:3445–3455

    Article  PubMed  CAS  Google Scholar 

  38. Sarnaik AA, Weber JS (2009) Recent advances using anti-CTLA-4 for the treatment of melanoma. Cancer J 15:169–173

    PubMed  CAS  Google Scholar 

  39. Seligman A, Shear MJ (1939) Experimental production of brain tumors in mice with methylcholanthrene. Am J Cancer 37:364–395

    CAS  Google Scholar 

  40. Newcomb EW, Zagzag D (2009) The murine GL261 glioma experimental model to assess novel brain tumor treatments. CNS Cancer 1:227–241

    Article  Google Scholar 

  41. Szatmari T, Lumniczky K, Desaknai S et al (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97:546–553

    Article  PubMed  CAS  Google Scholar 

  42. Zagzag D, Miller DC, Chiriboga L et al (2003) Green fluorescent protein immunohistochemistry as a novel experimental tool for the detection of glioma cell invasion in vivo. Brain Pathol 13:34–37

    Article  PubMed  Google Scholar 

  43. Yu JS, Burwick JA, Dranoff G et al (1997) Gene therapy for metastatic brain tumors by vaccination with granulocyte-macrophage colony-stimulating factor-transduced tumor cells. Hum Gene Ther 8:1065–1072

    Article  PubMed  CAS  Google Scholar 

  44. Miyatake S, Martuza RL, Rabkin SD (1997) Defective herpes simplex virus vectors expressing thymidine kinase for the treatment of malignant glioma. Cancer Gene Ther 4:222–228

    PubMed  CAS  Google Scholar 

  45. Vetter M, Hofer MJ, Roth E et al (2009) Intracerebral interleukin 12 induces glioma rejection in the brain predominantly by CD8+ T cells and independently of interferon-gamma. J Neuropathol Exp Neurol 68:525–534

    Article  PubMed  CAS  Google Scholar 

  46. Radaelli E, Ceruti R, Patton V et al (2009) Immunohistopathological and neuroimaging characterization of murine orthotopic xenograft models of glioblastoma multiforme recapitulating the most salient features of human disease. Histol Histopathol 24:879–891

    PubMed  CAS  Google Scholar 

  47. Rong Y, Durden DL, Van Meir EG et al (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65:529–539

    Article  PubMed  Google Scholar 

  48. Ishii N, Maier D, Merlo A et al (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479

    Article  PubMed  CAS  Google Scholar 

  49. Foehr ED, Lorente G, Kuo J et al (2006) Targeting of the receptor protein tyrosine phosphatase beta with a monoclonal antibody delays tumor growth in a glioblastoma model. Cancer Res 66:2271–2278

    Article  PubMed  CAS  Google Scholar 

  50. Furnari FB, Fenton T, Bachoo RM et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  PubMed  CAS  Google Scholar 

  51. Bryant NL, Gillespie GY, Lopez RD et al (2011) Preclinical evaluation of ex vivo expanded/activated gammadelta T cells for immunotherapy of glioblastoma multiforme. J Neurooncol 101:179–188

    Article  PubMed  Google Scholar 

  52. Allen C, Paraskevakou G, Iankov I et al (2008) Interleukin-13 displaying retargeted oncolytic measles virus strains have significant activity against gliomas with improved specificity. Mol Ther 16:1556–1564

    Article  PubMed  CAS  Google Scholar 

  53. Kruse CA, Molleston MC, Parks EP et al (1994) A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J Neurooncol 22:191–200

    Article  PubMed  CAS  Google Scholar 

  54. Jacobs VL, Valdes PA, Hickey WF et al (2011) Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN Neuro 3:e00063

    Article  PubMed  Google Scholar 

  55. King GD, Muhammad AKMG, Curtin JF et al (2008) Flt3L and TK gene therapy eradicate multifocal glioma in a syngeneic glioblastoma model. Neuro Oncol 10:19–31

    Article  PubMed  CAS  Google Scholar 

  56. Ali S, King GD, Curtin JF et al (2005) Combined immunostimulation and conditional cytotoxic gene therapy provide long-term survival in a large glioma model. Cancer Res 65:7194–7204

    Article  PubMed  CAS  Google Scholar 

  57. Ko L, Koestner A, Wechsler W (1980) Morphological characterization of nitrosourea-induced glioma cell lines and clones. Acta Neuropathol 51:23–31

    Article  PubMed  CAS  Google Scholar 

  58. Sibenaller ZA, Etame AB, Ali MM et al (2005) Genetic characterization of commonly used glioma cell lines in the rat animal model system. Neurosurg Focus 19:E1

    Article  PubMed  Google Scholar 

  59. Mathieu D, Lecomte R, Tsanaclis AM et al (2007) Standardization and detailed characterization of the syngeneic Fischer/F98 glioma model. Can J Neurol Sci 34:296–306

    PubMed  Google Scholar 

  60. Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 94:299–312

    Article  PubMed  Google Scholar 

  61. Tzeng JJ, Barth RF, Clendenon NR et al (1990) Adoptive immunotherapy of a rat glioma using lymphokine-activated killer cells and interleukin 2. Cancer Res 50:4338–4343

    PubMed  CAS  Google Scholar 

  62. Benda P, Lightbody J, Sato G et al (1968) Differentiated rat glial cell strain in tissue culture. Science 161:370–371

    Article  PubMed  CAS  Google Scholar 

  63. Benda P, Someda K, Messer J et al (1971) Morphological and immunochemical studies of rat glial tumors and clonal strains propagated in culture. J Neurosurg 34:310–323

    Article  PubMed  CAS  Google Scholar 

  64. Koestner A, Swenberg JA, Wechsler W (1971) Transplacental production with ethylnitrosourea of neoplasms of the nervous system in Sprague-Dawley rats. Am J Pathol 63:37–56

    PubMed  CAS  Google Scholar 

  65. Weizsacker M, Nagamune A, Winkelstroter R et al (1982) Radiation and drug response of the rat glioma RG2. Eur J Cancer Clin Oncol 18:891–895

    Article  PubMed  CAS  Google Scholar 

  66. Oshiro S, Liu Y, Fukushima T et al (2001) Modified immunoregulation associated with interferon-gamma treatment of rat glioma. Neurol Res 23:359–366

    Article  PubMed  CAS  Google Scholar 

  67. Paxinos G, Watson C (1998) The rat brain in stereotactic coordinates. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Assi, H., Candolfi, M., Lowenstein, P.R., Castro, M.G. (2012). Rodent Glioma Models: Intracranial Stereotactic Allografts and Xenografts. In: Martínez Murillo, R., Martínez, A. (eds) Animal Models of Brain Tumors. Neuromethods, vol 77. Humana Press, Totowa, NJ. https://doi.org/10.1007/7657_2011_33

Download citation

  • DOI: https://doi.org/10.1007/7657_2011_33

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-208-7

  • Online ISBN: 978-1-62703-209-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics