Skip to main content

Single Photon Emission Computed Tomography in Small Animal CNS Research

  • Protocol
  • First Online:
Animal Models of Brain Tumors

Part of the book series: Neuromethods ((NM,volume 77))

  • 1232 Accesses

Abstract

Micro-single photon emission computed tomography (SPECT) imaging is a powerful imaging technique able to achieve the temporal and spatial resolution needed for obtaining detailed functional data of different brain regions in small rodents. Multiple radiochemical strategies to develop SPECT probes able to target brain neurophysiology and neuropathology are developed. When combined to morphological imaging modalities such as micro-CT or micro-MRI, structural and functional information are merged improving, for translational CNS research, the understanding of neurological disorders in small animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strand S, Ivanovic M, Erlandsson FD, Button T, Sjögren K, Weber D (1994) Small animal imaging with pinhole single-photon emission computed tomography. Cancer 73:981–984

    Article  PubMed  CAS  Google Scholar 

  2. Schramm N, Ebel G, Engeland U, Schurrat T, Behe M, Behr T (2003) High resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 50:315–320

    Article  Google Scholar 

  3. Meikle S, Kench P, Kassiou M, Banati R (2005) Small animal SPECT in the matrix of molecular imaging technologies. Phys Med Biol 50:R45–R61

    Article  PubMed  CAS  Google Scholar 

  4. Beekman F, van der Have F, Vastenhouw B, Van der Linden A, Van Rijk P, Burbach J, Smidt M (2005) U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 46:1194–1200

    PubMed  Google Scholar 

  5. Walrand S, Jamar F, De Jong M, Pauwels S (2005) Evaluation of novel whole body high resolution rodent SPECT (linoview) based on direct acquisition of linogram projections. J Nucl Med 46:1872–1880

    PubMed  Google Scholar 

  6. Pissarek M, Oros-Peusquens AM, Schramm N (2008) Challenge by the murine brain: multi-pinhole SPECT of 123I labelled radiopharmaceuticals. J Neurosci Methods 168:282–292

    Article  PubMed  CAS  Google Scholar 

  7. Kung H, Pan S, Kung M, Billings J, Kaliswall R, Reilley J, Alavi A (1989) In vitro and in vivo evaluation of 123I-IBZM: a potential CNS D2 dopamine receptor imaging agent. J Nucl Med 30:88–92

    PubMed  CAS  Google Scholar 

  8. Kurokawa K, Jibiki I, Matsuda H, Fukushima T, Tsuji S, Yamaguchi N, Hisada K (1994) Comparison of benzodiazepine receptor and regional cerebral blood flow imaging of epileptiform foci in hippocampal kindled rabbits: a study with in vivo double tracer autoradiography using Iomazenil and HMPAO. Brain Res 642:303–310

    Article  PubMed  CAS  Google Scholar 

  9. Lan R, Lu Q, Fan P, Gatley J, Volkow N, Fernado S, Pertwee R, Makryannis A (1999) Design and synthesis of the CB1 selective cannabinoid antagonist AM281: a potential human SPECT ligand. AAPS Pharmasci 1(2):39–45

    Article  Google Scholar 

  10. Zerarka S, Pellerin L, Slosman D, Magistretti P (2001) Astrocytes as a predominant cellular site of 99mTc-HMPAO retention. J Cereb Flow Metab 21:456–468

    Article  CAS  Google Scholar 

  11. Scherfler C, Donnemiller E, Schocke M, Dierkes K, Decristoforo C, Oberladstatter M, Kolbitsch C, Zschiegner F, Riccabona G, Poewe W, Wenning G (2002) Evaluation of striatal dopamine transporter function in rats by in vivo beta-[123I]CIT pinhole SPECT. Neuroimage 17:128–141

    Article  PubMed  Google Scholar 

  12. Acton P, Choi S, Plössl K, Kung H (2002) Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography. Eur J Nucl Med 29:691–698

    Article  CAS  Google Scholar 

  13. De Win M, De Jeu R, De Bruin K, Habraken J, Reneman L, Booij J, Den Heeten G (2004) Validity of in vivo 123I-β-CIT SPECT in detecting MMDA-induced neurotoxicity in rats. Eur Neuropsychopharmacol 14:185–189

    Article  PubMed  Google Scholar 

  14. Chalon S, Bronquard C, Vercouillie J, Kodas E, Garreau L, Bodard S, Emond P, Besnard JC, Guilloteau D (2004) ADAM is an effective tool for in vivo study of serotoninergic function: validation in rat models. Synapse 52:136–142

    Article  PubMed  CAS  Google Scholar 

  15. Alvarez-Fischer D, Blessmann G, Trosowski C, Béhé M, Schurrat T, Hartmann A, Behr T, Oertel W, Höglinger G, Höffken H (2007) Quantitative 123I-FP-CIT pinhole SPECT imaging predicts striatal dopamine levels but not number of nigral neurons in different mouse models of Parkinson disease. Neuroimage 38:5–12

    Article  PubMed  CAS  Google Scholar 

  16. Hwang L, Chang C, Liu H, Lee S, Jan M, Chen C (2007) Imaging the availability of serotonin transporter in rat brain with 123I-ADAM and small animal SPECT. Nucl Med Commun 28:615–621

    Article  PubMed  CAS  Google Scholar 

  17. Meyer P, Salber D, Schiefer J, Cremer M, Schaefer W, Kosinski C, Langen K (2008) Cerebral kinetics of the dopamine D2 receptor ligand 123I-IBZM in mice. Nucl Med Biol 35:467–473

    Article  PubMed  CAS  Google Scholar 

  18. Jongen C, de Bruin K, Beekmann F, Booij J (2008) SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice. Eur J Nucl Med Mol Imaging 35:1692–1698

    Article  PubMed  CAS  Google Scholar 

  19. Blanckaert P, Burvenich I, Wyffels L, De Bruyne S, Moerman L, De Vos F (2008) In vivo evaluation in rodents of 123I-3-I-CO as a potential SPECT tracer for the serotonin 5-HT2a receptor. Nucl Med Biol 35:861–867

    Article  PubMed  CAS  Google Scholar 

  20. Sharma S, Ebadi M (2008) SPECT neuroimaging in translational research of CNS disorders. Neurochem Int 52:352–362

    Article  PubMed  CAS  Google Scholar 

  21. Blankenberg F, Katsikis P, Tait J, Davis R, Naumovski L, Ohtsuki K, Kopiwoda S, Abrams M, Darkes M, Robbins R, Maecker H, Strauss H (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci 95:6349–6354

    Article  PubMed  CAS  Google Scholar 

  22. Kung MP, Hou C, Zhuang ZP, Zhang B, Skovronsky D, Trojanowski J, Lee V, Kung H (2002) IMPY: an improved thioflavin-T derivative for in vivo labeling of b-amyloid plaques. Brain Res 956:202–210

    Article  PubMed  CAS  Google Scholar 

  23. Scopinaro F, Paschali E, Di Santo G, Antonellis T, Massari R, Trotta C, Gourni H, Bouziotis P, David V, Soluri A, Varvarigou A (2006) Bombesin receptors and transplanted stem cells in rat brain: high resolution scan with 99mTc-BN1.1. Nucl Inst Methods Phys Res A 569:525–528

    Article  CAS  Google Scholar 

  24. Ono M (2009) Development of positron-emission tomography/single-photon emission computed tomography imaging probes for in vivo detection of β-amyloid plaques in Alzheimer’s brains. Chem Pharm Bull 57:1029–1039

    Article  PubMed  CAS  Google Scholar 

  25. Lappalainen R, Narkilahti S, Huhtala T, Liimatainen T, Suuronen T, Närvänen A, Suuronen R, Hovatta O, Jolkkonen J (2008) The SPECT imaging shows the accumulation of neural progenitor cells into internal organs after systemic administration in middle cerebral artery occlusion rats. Neurosci Lett 440:246–250

    Article  PubMed  CAS  Google Scholar 

  26. Brismar T, Collins P, Kesselberg M (1989) Thallium 201 uptake relates to membrane potential and potassium permeability in human glioma cells. Brain Res 500:30–36

    Article  PubMed  CAS  Google Scholar 

  27. Kim K, Black K, Marciano D, Mazziotta J, Guze B, Grafton S, Hawkins R, Becker D (1990) Thallium-201 SPECT imaging of brain tumors: methods and results. J Nucl Med 31:965–969

    PubMed  CAS  Google Scholar 

  28. Soler C, Beauchesne P, Maatougui K, Schmitt T, Barral FG, Michel D, Dubois F, Brunon J (1998) Technetium-99 m sestamibi brain single-photon emission tomography for detection of recurrent gliomas after radiation therapy. Eur J Nucl Med 25:1649–1657

    Article  PubMed  CAS  Google Scholar 

  29. Barai S, Bandopadhayaya G, Julka P, Kale S, Malhotra A, Haloi A, Seith A, Sing N (2004) Evaluation of 99mTc-L-methionine brain SPECT for detection of recurrent brain tumor: a pilot study with radiological and pathological correlation. Acta Radiol 45:649–657

    Article  PubMed  CAS  Google Scholar 

  30. Fukumoto M (2004) Single photon agents for tumor imaging: 201Tl, 99mTc-MIBI, and 99mTc-tetrofosmin. Ann Nucl Med 18:79–95

    Article  PubMed  CAS  Google Scholar 

  31. Alexiou G, Fotopoulos A, Papadopoulos A, Kyritsis A, Polyzoidis K, Tsiouris S (2007) Evaluation of brain tumor recurrence by 99mTc-Tetrofosmin SPECT: a prospective pilot study. Ann Nucl Med 21:293–298

    Article  PubMed  Google Scholar 

  32. Qihua H, Zhaofei L, Bing J, Xiaoxia L, Jiyun S, Jun Z, Feng L, Zhi Y, Yinan L, Li S, Fan W (2008) In vivo gamma imaging of the secondary tumors of transplanted human fetal striatum neural stem cells-derived primary tumor cell. Neuroreport 19:1009–1014

    Article  Google Scholar 

  33. Nimmagadda S, Pullambhatla M, Pomper M (2009) Immunoimaging of CXCR4 expression in brain tumor xenografts using SPECT/CT. J Nucl Med 50:1124–1130

    Article  PubMed  CAS  Google Scholar 

  34. De Branco A, Mota L, Ferreira C, Oliveira M, Goés A, Cardoso V (2010) Bombesin derivative radiolabeled with technetium 99 m as agent for tumor identification. Bioorg Med Chem Lett. doi:10.1016/j.bmcl.2010.08.124

  35. Hazari P, Shukla G, Goel V, Chuttani K, Kumar N, Sharma R, Mishra A (2010) Synthesis of specific SPECT-radiopharmaceutical for tumor imaging based on methionine: 99mTc-DTPA-bis(methionine). Bioconjug Chem 21:229–239

    Article  PubMed  CAS  Google Scholar 

  36. Waerzeggers Y, Monfared P, Viel T, Winkeler A, Jacobs A (2010) Mouse models in neurological disorders: applications of non-invasive imaging. Biochim Biophys Acta 1802:819–839

    Article  PubMed  CAS  Google Scholar 

  37. Hagooly A, Rossin R, Welch J (2008) Small molecule receptors as imaging targets. In: Semmler W, Schwaiger M (eds) Molecular imaging II, handbook of experimental pharmacology 185/II. Springer, Berlin Heidelberg

    Google Scholar 

  38. Mindt T, Struthers H, Spingler B, Brans L, Tourwé D, Garcia-Garayoa E, Schibli R (2010) Molecular assembly of multifunctional 99mTc radiopharmaceuticals using “clickable” amino acid derivatives. Chem Med Chem. doi:10.1002/cmdc.201000342

  39. Choquet P, Goetz C, Aubertin G, Hubele F, Sannié S, Constantinesco A (2011) Carbon tube electrodes for ECG gated multimodality imaging in mice. JAALAS 50:61–64

    PubMed  CAS  Google Scholar 

  40. Choquet P, Breton E, Goetz C, Marin C, Constantinesco A (2009) Dedicated low-field MRI in mice. Phys Med Biol 54:5287–5299

    Article  PubMed  CAS  Google Scholar 

  41. Goetz C, Breton E, Choquet P, Israel-Jost V, Constantinesco A (2008) SPECT Low field MRI system for small animal imaging. J Nucl Med 49:88–93

    Article  PubMed  Google Scholar 

  42. Israel-Jost V, Choquet P, Salmon S, Blondet C, Sonnendrucker E, Constantinesco A (2006) Pinhole SPECT imaging: compact projection/backprojection operator for efficient algebraic reconstruction. IEEE Trans Med Imaging 25:158–167

    Article  PubMed  Google Scholar 

  43. Meyer P, Salber D, Schiefer J, Cremer M, Schaeffer W, Kosinski C, Langen K (2008) Comparison of intravenous and intraperitoneal 123I-IBZM injection for dopamine D2 receptor imaging in mice. Nucl Med Biol 35:543–548

    Article  PubMed  CAS  Google Scholar 

  44. Matsuda H, Tsuji S, Shuke N, Sumiya H, Tonami N, Hisada K (1992) A quantitative approach to technetium-99 m hexamethylpropylene amine oxime. Eur J Nucl Med 19:195–200

    Article  PubMed  CAS  Google Scholar 

  45. Zeniya T, Watabe H, Hayashi T, Teramoto N, Myogin K, Taguchi A, Sato H, Yamamoto A, Sohlberg A, Inomata T, Iida H (2007) Absolute quantitation of regional cerebral blood flow in mouse using 123I-iodoamphetamine and pinhole SPECT. J Cereb Flow Metab 27(Suppl 1):BP20-04 H

    Google Scholar 

  46. Choquet P, Israel-Jost V, Namer I, Bilbaut P, Schneider F, Constantinesco A (2005) CBF imaging and global CBF quantification in normal rats using dedicated pinhole SPECT system. J Cereb Flow Metab 25:S527

    Article  Google Scholar 

  47. Hamamura M, Ha S, Roeck W, Muftuler L, Wagenaar D, Meier D, Patt B, Nalcioglu O (2010) Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol 55:1563–1575

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Constantinesco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Constantinesco, A., Goetz, C., Choquet, P. (2012). Single Photon Emission Computed Tomography in Small Animal CNS Research. In: Martínez Murillo, R., Martínez, A. (eds) Animal Models of Brain Tumors. Neuromethods, vol 77. Humana Press, Totowa, NJ. https://doi.org/10.1007/7657_2011_32

Download citation

  • DOI: https://doi.org/10.1007/7657_2011_32

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-208-7

  • Online ISBN: 978-1-62703-209-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics