Skip to main content

EGFR and Tumor Suppressor Function in Brain Cancer Development

  • Protocol
  • First Online:
Animal Models of Brain Tumors

Part of the book series: Neuromethods ((NM,volume 77))

  • 1231 Accesses

Abstract

Genetically engineered mouse models (GEMM) of glioblastoma multiforme (GBM) provide a system in which de novo tumors arise and develop within the context of a proper tumor microenvironment. These models are considered superior to orthotopic xenograft systems because they allow for the development of tumors in situ and in an immune competent environment. More importantly, they allow for the assessment of specific genetic mutations on the etiology of GBM and their responses to therapeutic interventions. Using cutting edge Cre/Lox technologies, we created compound conditional transgenic strains based on a Cre-induced expression of mutant EGFRvIII with the concomitant loss of the Cdkn2a and PTEN tumor suppressor genes. The introduction of a conditional firefly luciferase transgene provides a means to monitor tumor initiation and growth noninvasively by bioluminescence imaging. The tumors that are generated in this model share numerous histopathological features with human GBMs. We provide here a detailed description of the methodologies used to initiate and monitor GBM tumors in this model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  PubMed  CAS  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  Google Scholar 

  3. Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10:319–331

    Article  PubMed  CAS  Google Scholar 

  4. The Cancer Genome Atlas Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Google Scholar 

  5. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  PubMed  CAS  Google Scholar 

  6. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  PubMed  CAS  Google Scholar 

  7. Frederick L, Wang XY, Eley G, James CD (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60:1383–1387

    PubMed  CAS  Google Scholar 

  8. Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS, Vogelstein B (1992) Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci U S A 89:2965–2969

    Article  PubMed  CAS  Google Scholar 

  9. Inda MM, Bonavia R, Mukasa A, Narita Y, Sah DW, Vandenberg S, Brennan C, Johns TG, Bachoo R, Hadwiger P, Tan P, Depinho RA, Cavenee W, Furnari F (2010) Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 24:1731–1745

    Article  PubMed  CAS  Google Scholar 

  10. Huang PH, Xu AM, White FM (2009) Oncogenic EGFR signaling networks in glioma. Sci Signal 2:re6

    Article  PubMed  Google Scholar 

  11. Zhu H, Acquaviva J, Ramachandran P, Boskovitz A, Woolfenden S, Pfannl R, Bronson RT, Chen JW, Weissleder R, Housman DE, Charest A (2009) Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci USA 106:2712–2716

    Article  PubMed  CAS  Google Scholar 

  12. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92:725–734

    Article  PubMed  CAS  Google Scholar 

  14. Lino MM, Merlo A (2010) PI3Kinase signaling in glioblastoma. J Neurooncol 103(3):417–427

    Article  PubMed  Google Scholar 

  15. Hambardzumyan D, Parada LF, Holland EC, Charest A (2011) Genetic modeling of gliomas in mice: new tools to tackle old problems. Glia 59(8):1155–1168

    Article  PubMed  Google Scholar 

  16. Gopinathan A, Tuveson DA (2008) The use of GEM models for experimental cancer therapeutics. Dis Model Mech 1:83–86

    Article  PubMed  Google Scholar 

  17. Woolfenden S, Zhu H, Charest A (2009) A Cre/LoxP conditional luciferase reporter transgenic mouse for bioluminescence monitoring of tumorigenesis. Genesis 47:659–666

    Article  PubMed  CAS  Google Scholar 

  18. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37

    Article  PubMed  CAS  Google Scholar 

  19. Lesche R, Groszer M, Gao J, Wang Y, Messing A, Sun H, Liu X, Wu H (2002) Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32:148–149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Hyun Jung Jun for technical advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al Charest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lessard, J., Charest, A. (2012). EGFR and Tumor Suppressor Function in Brain Cancer Development. In: Martínez Murillo, R., Martínez, A. (eds) Animal Models of Brain Tumors. Neuromethods, vol 77. Humana Press, Totowa, NJ. https://doi.org/10.1007/7657_2011_30

Download citation

  • DOI: https://doi.org/10.1007/7657_2011_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-208-7

  • Online ISBN: 978-1-62703-209-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics