Advertisement

Integrated Optogenetic and Electrophysiological Dissection of Local Cortical Circuits In Vivo

  • Jessica A. Cardin
Protocol
Part of the Neuromethods book series (NM, volume 67)

Abstract

The recent development of optical methods for controlling the activity of specific populations of neurons holds tremendous promise for understanding the roles of neural subtypes in local circuits, a major goal of systems neuroscience. Optogenetic tools, in combination with electrophysiology, allow identification and manipulation of specific groups of excitatory and inhibitory neurons in active neural networks in vivo in a spatially and temporally precise manner. Here, we provide a detailed description of methods for integrating optogenetics with more traditional electrophysiological approaches as a means to probe these complex interactions.

Key words

Optogenetic Interneuron Oscillation Channelrhodopsin-2 Halorhodopsin Artifact Light-evoked activity Cortex Electrophysiology In vivo 

Notes

Acknowledgments

This work was funded by NIH/NEI R00 EY018407, the Whitehall Foundation, and the Esther A. and Joseph Klingenstein Foundation.

References

  1. 1.
    Ascoli GA, Alonso-Nanclares L, Anderson SA et al (2008) Petilla terminology: nomenclature of features of gabaergic interneurons of the cerebral cortex. Nat Rev Neurosci 9(7):557–568PubMedCrossRefGoogle Scholar
  2. 2.
    Markram H, Toledo-Rodriguez M, Wang Y et al (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793–807PubMedCrossRefGoogle Scholar
  3. 3.
    Moore CI, Carlen M, Knoblich U et al (2010) Neocortical interneurons: from diversity, strength. Cell 142(2):189–193. doi:S0092-8674(10)00774-9[pii].10.1016/j.cell.2010.07.005PubMedCrossRefGoogle Scholar
  4. 4.
    Pare D, Shink E, Gaudreau H et al (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J Neurophysiol 79(3):1450–1460PubMedGoogle Scholar
  5. 5.
    Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268PubMedCrossRefGoogle Scholar
  6. 6.
    Kuhlman SJ, Huang ZJ (2008) High-resolution labeling and functional manipulation of specific neuron types in mouse brain by cre-activated viral gene expression. PLoS One 3(4):e2005PubMedCrossRefGoogle Scholar
  7. 7.
    Sohal VS, Zhang F, Yizhar O et al (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702PubMedCrossRefGoogle Scholar
  8. 8.
    Cardin JA, Carlen M, Meletis K et al (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–667PubMedCrossRefGoogle Scholar
  9. 9.
    Gradinaru V, Mogri M, Thompson KR et al (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324(5925):354–359PubMedCrossRefGoogle Scholar
  10. 10.
    Han X, Qian X, Bernstein JG et al (2009) Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62(2):191–198PubMedCrossRefGoogle Scholar
  11. 11.
    Huber D, Petreanu L, Ghitani N et al (2008) Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451(7174):61–64PubMedCrossRefGoogle Scholar
  12. 12.
    Petreanu L, Huber D, Sobczyk A et al (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10(5):663–668PubMedCrossRefGoogle Scholar
  13. 13.
    Petreanu L, Mao T, Sternson SM et al (2009) The subcellular organization of neocortical excitatory connections. Nature 457(7233):1142–1145PubMedCrossRefGoogle Scholar
  14. 14.
    Tsai HC, Zhang F, Adamantidis A et al (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324(5930):1080–1084PubMedCrossRefGoogle Scholar
  15. 15.
    Adesnik H, Scanziani M (2010) Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464(7292):1155–1160. doi:nature08935[pii].10.1038/nature08935PubMedCrossRefGoogle Scholar
  16. 16.
    Arenkiel BR, Peca J, Davison IG et al (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54(2):205–218PubMedCrossRefGoogle Scholar
  17. 17.
    Gradinaru V, Zhang F, Ramakrishnan C etal (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141(1):154–165. doi:S0092-8674(10)00190-X[pii].10.1016/j.cell.2010.02.037PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang F, Wang LP, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639. doi:nature05744[pii].10.1038/nature05744PubMedCrossRefGoogle Scholar
  19. 19.
    Chow BY, Han X, Dobry AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277):98–102. doi:nature08652[pii].10.1038/nature08652PubMedCrossRefGoogle Scholar
  20. 20.
    Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483PubMedCrossRefGoogle Scholar
  21. 21.
    Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240(1): 237–246PubMedCrossRefGoogle Scholar
  22. 22.
    Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103(4):865–872PubMedCrossRefGoogle Scholar
  23. 23.
    Tabata H, Nakajima K (2002) Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the reelin signal-deficient mice. J Neurosci Res 69(6):723–730PubMedCrossRefGoogle Scholar
  24. 24.
    Tabata H, Nakajima K (2003) Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23(31):9996–10001PubMedGoogle Scholar
  25. 25.
    Wonders C, Anderson SA (2005) Cortical interneurons and their origins. Neuroscientist 11(3):199–205PubMedCrossRefGoogle Scholar
  26. 26.
    Borrell V, Yoshimura Y, Callaway EM (2005) Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. J Neurosci Methods 143(2):151–158PubMedCrossRefGoogle Scholar
  27. 27.
    Jasnow AM, Rainnie DG, Maguschak KA et al (2009) Construction of cell-type specific promoter lentiviruses for optically guiding electrophysiological recordings and for targeted gene delivery. Methods Mol Biol 515:199–213PubMedCrossRefGoogle Scholar
  28. 28.
    Nathanson JL, Yanagawa Y, Obata K et al (2009) Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161(2):441–450PubMedCrossRefGoogle Scholar
  29. 29.
    Fu H, Muenzer J, Samulski RJ et al (2003) Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of aav-mediated transgene expression in mouse brain. Mol Ther 8(6):911–917PubMedCrossRefGoogle Scholar
  30. 30.
    Taymans JM, Vandenberghe LH, Haute CV et al (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 18(3):195–206PubMedCrossRefGoogle Scholar
  31. 31.
    Van Vliet KM, Blouin V, Brument N et al (2008) The role of the adeno-associated virus capsid in gene transfer. Methods Mol Biol 437:51–91PubMedCrossRefGoogle Scholar
  32. 32.
    Atasoy D, Aponte Y, Su HH et al (2008) A flex switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28(28):7025–7030PubMedCrossRefGoogle Scholar
  33. 33.
    Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62PubMedCrossRefGoogle Scholar
  34. 34.
    Cardin JA, Carlen M, Meletis K et al (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of channelrhodopsin-2. Nat Protoc 5(2):247–254. doi:nprot.2009.228[pii].10.1038/nprot.2009.228PubMedCrossRefGoogle Scholar
  35. 35.
    Ayling OG, Harrison TC, Boyd JD et al (2009) Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat Methods 6(3):219–224PubMedCrossRefGoogle Scholar
  36. 36.
    Tenenbaum L, Chtarto A, Lehtonen E et al (2004) Recombinant aav-mediated gene delivery to the central nervous system. J Gene Med 6(Suppl 1):S212–S222PubMedCrossRefGoogle Scholar
  37. 37.
    Aravanis AM, Wang LP, Zhang F et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4(3):S143–S156PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jessica A. Cardin
    • 1
  1. 1.Department of NeurobiologyYale University School of MedicineNew HavenUSA

Personalised recommendations