Fast Perfusion Methods for the Study of Ligand-Gated Ion Channels

  • Andrea Barberis
Part of the Neuromethods book series (NM, volume 67)


The elementary information transfer between two neurons is represented by the generation of a synaptic current in the post-synaptic element due to the activation of post-synaptic receptors by a neurotransmitter quantum. The duration and the amplitude of such signals are largely determined by the properties of post-synaptic receptors and the profile of neurotransmitter concentration sensed by post-synaptic receptors. To date, the knowledge about the properties of post-synaptic receptors activated in synaptic conditions has been limited by the difficulty to control and reproduce the synaptic neurotransmitter exposures. In this chapter, it is shown how to build and optimize devices capable to deliver neurotransmitter pulses approaching those occurring at the synapse. In addition, the role of the neurotransmitter concentration profile at the synaptic cleft in shaping post-synaptic currents is emphasized.

Key words

Synaptic transmission Post-synaptic receptors Synaptic cleft Theta-glass Neurotransmitter release Neurotransmitter concentration 



I wish to thank Enrica M. Petrini and Jerzy W. Mozrzymas for critical reading of the manuscript. This work was supported by the Fet Proactive7 grant to Fabio Benfenati (Italian Institute of Technology, Neuroscience and Brain Technology, Italy) and AB.


  1. 1.
    Freund TF, Katona I (2007) Perisomatic inhibition. Neuron 56:33–42PubMedCrossRefGoogle Scholar
  2. 2.
    Karayannis T, Elfant D, Huerta-Ocampo I et al (2010) Slow GABA transient and receptor desensitization shape synaptic responses evoked by hippocampal neurogliaform cells. J Neurosci 30:9898–9909PubMedCrossRefGoogle Scholar
  3. 3.
    Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57PubMedCrossRefGoogle Scholar
  4. 4.
    Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221PubMedCrossRefGoogle Scholar
  5. 5.
    Klausberger T (2009) GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur J Neurosci 30:947–957PubMedCrossRefGoogle Scholar
  6. 6.
    Clements JD, Lester RA, Tong G et al (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501PubMedCrossRefGoogle Scholar
  7. 7.
    Mozrzymas JW, Zarnowska ED, Pytel M et al (2003) Modulation of GABA(A) receptors by hydrogen ions reveals synaptic GABA transient and a crucial role of the desensitization process. J Neurosci 23:7981–7992PubMedGoogle Scholar
  8. 8.
    Franke C, Hatt H, Dudel J (1987) Liquid filament switch for ultra-fast exchanges of solutions at excised patches of synaptic membrane of crayfish muscle. Neurosci Lett 77(2):199–204PubMedCrossRefGoogle Scholar
  9. 9.
    Jonas P (1995) Fast application of agonists to isolated membrane patches. Single-channel recording. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum press, New York, pp 231–243Google Scholar
  10. 10.
    Popescu G, Robert A, Howe JR et al (2004) Reaction mechanism determines NMDA receptor response to repetitive stimulation. Nature 430:790–793PubMedCrossRefGoogle Scholar
  11. 11.
    He L, Wu XS, Mohan R et al (2006) Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444:102–105PubMedCrossRefGoogle Scholar
  12. 12.
    Barberis A, Sachidhanandam S, Mulle C (2008) GluR6/KA2 kainate receptors mediate slow-deactivating currents. J Neurosci 28:6402–6406PubMedCrossRefGoogle Scholar
  13. 13.
    Mozrzymas JW, Barberis A, Mercik K et al (2003) Binding sites, singly bound states, and conformation coupling shape GABA-evoked currents. J Neurophysiol 89:871–883PubMedCrossRefGoogle Scholar
  14. 14.
    Lester RA, Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J Neurosci 12:635–643PubMedGoogle Scholar
  15. 15.
    Jones MV, Westbrook GL (1995) Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15:181–191PubMedCrossRefGoogle Scholar
  16. 16.
    Partin KM, Patneau DK, Winters CA et al (1993) Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 11:1069–1082PubMedCrossRefGoogle Scholar
  17. 17.
    Sachidhanandam S, Blanchet C, Jeantet Y et al (2009) Kainate receptors act as conditional amplifiers of spike transmission at hippocampal mossy fiber synapses. J Neurosci 29:5000–5008PubMedCrossRefGoogle Scholar
  18. 18.
    Mott DD, Rojas A, Fisher JL et al (2010) Subunit-specific desensitization of heteromeric kainate receptors. J Physiol 588:683–700PubMedCrossRefGoogle Scholar
  19. 19.
    Mozrzymas JW, Barberis A, Vicini S (2007) GABAergic currents in RT and VB thalamic nuclei follow kinetic pattern of alpha3- and alpha1-subunit-containing GABAA receptors. Eur J Neurosci 26:657–665PubMedCrossRefGoogle Scholar
  20. 20.
    Trigo FF, Papageorgiou G, Corrie JE et al (2009) Laser photolysis of DPNI-GABA, a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ. J Neurosci Methods 181:159–169PubMedCrossRefGoogle Scholar
  21. 21.
    Matsuzaki M, Hayama T, Kasai H et al (2010) Two-photon uncaging of gamma-aminobutyric acid in intact brain tissue. Nat Chem Biol 6:255–257PubMedCrossRefGoogle Scholar
  22. 22.
    Matsuzaki M, Ellis-Davies GC, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4: 1086–1092PubMedCrossRefGoogle Scholar
  23. 23.
    DiGregorio DA, Rothman JS, Nielsen TA et al (2007) Desensitization properties of AMPA receptors at the cerebellar mossy fiber granule cell synapse. J Neurosci 27:8344–8357PubMedCrossRefGoogle Scholar
  24. 24.
    Heine M, Groc L, Frischknecht R et al (2008) Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320:201–205PubMedCrossRefGoogle Scholar
  25. 25.
    Gorostiza P, Isacoff EY (2008) Optical switches for remote and noninvasive control of cell signaling. Science 322:395–399PubMedCrossRefGoogle Scholar
  26. 26.
    Gorostiza P, Isacoff EY (2008) Nanoengineering ion channels for optical control. Physiology (Bethesda) 23:238–247CrossRefGoogle Scholar
  27. 27.
    Numano R, Szobota S, Lau AY et al (2009) Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proc Natl Acad Sci U S A 106:6814–6819PubMedCrossRefGoogle Scholar
  28. 28.
    Sachs F (1999) Practical limits on the maximal speed of solution exchange for patch clamp experiments. Biophys J 77:682–690PubMedCrossRefGoogle Scholar
  29. 29.
    Carslaw H (1959) Conduction of heat in solids. Clarendon, OxfordGoogle Scholar
  30. 30.
    Stilson S, McClellan A, Devasia S (2001) High-speed solution switching using piezo-based micropositioning stages. IEEE Trans Biomed Eng 48:806–814PubMedCrossRefGoogle Scholar
  31. 31.
    Moffatt L, Hume RI (2007) Responses of rat P2X2 receptors to ultrashort pulses of ATP provide insights into ATP binding and channel gating. J Gen Physiol 130:183–201PubMedCrossRefGoogle Scholar
  32. 32.
    Dravid SM, Prakash A, Traynelis SF (2008) Activation of recombinant NR1/NR2C NMDA receptors. J Physiol 586:4425–4439PubMedCrossRefGoogle Scholar
  33. 33.
    Pitt SJ, Sivilotti LG, Beato M (2008) High intracellular chloride slows the decay of glycinergic currents. J Neurosci 28:11454–11467PubMedCrossRefGoogle Scholar
  34. 34.
    Barberis A, Mozrzymas JW, Ortinski PI et al (2007) Desensitization and binding properties determine distinct alpha1beta2gamma2 and alpha3beta2gamma2 GABA(A) receptor-channel kinetic behavior. Eur J Neurosci 25:2726–2740PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Andrea Barberis
    • 1
  1. 1.Department of Neuroscience and Brain TechnologiesItalian Institute of TechnologyGenoaItaly

Personalised recommendations