Advertisement

Voltage-Sensitive Dye Imaging of Cortical Function In Vivo

  • Eugene F. Civillico
Protocol
Part of the Neuromethods book series (NM, volume 67)

Abstract

Voltage-sensitive dye imaging (VSDI) is the optical interrogation of transmembrane voltage using an exogenous membrane-bound probe. When bulk-applied to intact tissue, voltage-sensitive dyes allow the measurement at high temporal and spatial resolution of subthreshold population membrane potential dynamics in regions of interest of arbitrary size and shape. This is particularly useful in vivo for mapping of input patterns to surface brain structures in order to study neuronal integration at the population level. This chapter provides an introduction to the use of VSDI in vivo. The first half consists of a discussion of the mechanism of action of optical voltage probes and the resulting implications for the interpretation of VSDI data, and offers a perspective on useful future applications and improvements. The second half includes a detailed protocol for VSDI in the barrel cortex of the anesthetized mouse, followed by further notes on practical details of the method.

Key words

VSDI Voltage-sensitive dye Optical recording Physiology 

References

  1. 1.
    Cohen LB, Keynes RD, Hille B (1968) Light scattering and birefringence changes during nerve activity. Nature 218:438–441PubMedCrossRefGoogle Scholar
  2. 2.
    Davila HV, Salzberg BM, Cohen LB et al (1973) A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nat New Biol 241:159–160PubMedGoogle Scholar
  3. 3.
    Grinvald A, Lieke EE, Frostig RD et al (1994) Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14:2545–2568PubMedGoogle Scholar
  4. 4.
    Kuhn B, Fromherz P, Denk W (2004) High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophys J 87:631–639PubMedCrossRefGoogle Scholar
  5. 5.
    Loew LM, Cohen LB, Salzberg BM et al (1985) Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys J 47:71–77PubMedCrossRefGoogle Scholar
  6. 6.
    Salzberg BM, Davila HV, Cohen LB (1973) Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature 246:508–509PubMedCrossRefGoogle Scholar
  7. 7.
    Salzberg BM, Obaid AL, Senseman DM et al (1983) Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components. Nature 306:36–40PubMedCrossRefGoogle Scholar
  8. 8.
    Salzberg BM (1989) Optical recording of voltage changes in nerve terminals and in fine neuronal processes. Annu Rev Physiol 51:507–526PubMedCrossRefGoogle Scholar
  9. 9.
    Salzberg BM, Obaid AL, Bezanilla F (1993) Microsecond response of a voltage-sensitive merocyanine dye: fast voltage-clamp measurements on squid giant axon. Jpn J Physiol 43(Suppl 1):S37–S41PubMedGoogle Scholar
  10. 10.
    Shoham D, Glaser DE, Arieli A et al (1999) Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24:791–802PubMedCrossRefGoogle Scholar
  11. 11.
    Laaris N, Carlson GC, Keller A (2000) Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging. J Neurosci 20:1529–1537PubMedGoogle Scholar
  12. 12.
    Laaris N, Keller A (2002) Functional independence of layer IV barrels. J Neurophysiol 87:1028–1034PubMedGoogle Scholar
  13. 13.
    Contreras D, Llinas R (2001) Voltage-sensitive dye imaging of neocortical spatiotemporal dynamics to afferent activation frequency. J Neurosci 21:9403–9413PubMedGoogle Scholar
  14. 14.
    Ang CW, Carlson GC, Coulter DA (2005) Hippocampal CA1 circuitry dynamically gates direct cortical inputs preferentially at theta frequencies. J Neurosci 25:9567–9580PubMedCrossRefGoogle Scholar
  15. 15.
    Cohen LB, Salzberg BM, Grinvald A (1978) Optical methods for monitoring neuron activity. Annu Rev Neurosci 1:171–182PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen LB, Salzberg BM (1978) Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol 83:35–88PubMedGoogle Scholar
  17. 17.
    Kleinfeld D, Delaney KR (1996) Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J Comp Neurol 375:89–108PubMedCrossRefGoogle Scholar
  18. 18.
    Petersen CC, Grinvald A, Sakmann B (2003) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23:1298–1309PubMedGoogle Scholar
  19. 19.
    Yuste R, Tank DW, Kleinfeld D (1997) Functional study of the rat cortical microcircuitry with voltage-sensitive dye imaging of neocortical slices. Cereb Cortex 7:546–558PubMedCrossRefGoogle Scholar
  20. 20.
    Konnerth A, Obaid AL, Salzberg BM (1987) Optical recording of electrical activity from parallel fibres and other cell types in skate cerebellar slices in vitro. J Physiol 393:681–702PubMedGoogle Scholar
  21. 21.
    Antic S, Major G, Zecevic D (1999) Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. J Neurophysiol 82:1615–1621PubMedGoogle Scholar
  22. 22.
    Antić S, Major G, Chen WR et al (1997) Fast voltage-sensitive dye recording of membrane potential changes at multiple sites on an individual nerve cell in the rat cortical slice. Biol Bull 193:261PubMedGoogle Scholar
  23. 23.
    Grinvald A, Salzberg BM, Lev-Ram V et al (1987) Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. Biophys J 51:643–651PubMedCrossRefGoogle Scholar
  24. 24.
    Zecević D, Antić S (1998) Fast optical measurement of membrane potential changes at multiple sites on an individual nerve cell. Histochem J 30:197–216PubMedCrossRefGoogle Scholar
  25. 25.
    Dombeck DA, Sacconi L, Blanchard-Desce M et al (2005) Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy. J Neurophysiol 94:3628–3636PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou WL, Yan P, Wuskell JP et al (2007) Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites. J Neurosci Methods 164:225–239PubMedCrossRefGoogle Scholar
  27. 27.
    Palmer LM, Stuart GJ (2009) Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci 29:6897–6903PubMedCrossRefGoogle Scholar
  28. 28.
    Palmer LM, Clark BA, Gründemann J et al (2010) Initiation of simple and complex spikes in cerebellar Purkinje cells. J Physiol 588:1709–1717PubMedCrossRefGoogle Scholar
  29. 29.
    Petersen CC, Sakmann B (2001) Functionally independent columns of rat somatosensory barrel cortex revealed with voltage-sensitive dye imaging. J Neurosci 21:8435–8446PubMedGoogle Scholar
  30. 30.
    Petersen CC, Hahn TT, Mehta M et al (2003) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci USA 100: 13638–13643PubMedCrossRefGoogle Scholar
  31. 31.
    Nelson DA, Katz LC (1995) Emergence of functional circuits in ferret visual cortex visualized by optical imaging. Neuron 15:23–34PubMedCrossRefGoogle Scholar
  32. 32.
    Song WJ, Kawaguchi H, Totoki S et al (2006) Cortical intrinsic circuits can support activity propagation through an isofrequency strip of the guinea pig primary auditory cortex. Cereb Cortex 16:718–729PubMedCrossRefGoogle Scholar
  33. 33.
    Berger T, Borgdorff A, Crochet S et al (2007) Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. J Neurophysiol 97:3751–3762PubMedCrossRefGoogle Scholar
  34. 34.
    Civillico EF, Contreras D (2005) Comparison of responses to electrical stimulation and whisker deflection using two different voltage-sensitive dyes in mouse barrel cortex in vivo. J Membr Biol 208:171–182PubMedCrossRefGoogle Scholar
  35. 35.
    Civillico EF, Contreras D (2006) Integration of evoked responses in supragranular cortex studied with optical recordings in vivo. J Neurophysiol 96:336–351PubMedCrossRefGoogle Scholar
  36. 36.
    Crochet S, Petersen CC (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat Neurosci 9:608–610PubMedCrossRefGoogle Scholar
  37. 37.
    Ferezou I, Bolea S, Petersen CC (2006) Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50:617–629PubMedCrossRefGoogle Scholar
  38. 38.
    Ferezou I, Haiss F, Gentet LJ et al (2007) Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56:907–923PubMedCrossRefGoogle Scholar
  39. 39.
    Yaksi E, Friedrich RW (2006) Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat Methods 3:377–383PubMedCrossRefGoogle Scholar
  40. 40.
    Rall W, Shepherd GM, Reese TS et al (1966) Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp Neurol 14:44–56PubMedCrossRefGoogle Scholar
  41. 41.
    Fukuda T, Kosaka T, Singer W et al (2006) Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J Neurosci 26:3434–3443PubMedCrossRefGoogle Scholar
  42. 42.
    Traub RD, Whittington MA, Stanford IM et al (1996) A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383:621–624PubMedCrossRefGoogle Scholar
  43. 43.
    Anastassiou CA, Perin R, Markram H et al (2011) Ephaptic coupling of cortical neurons. Nat Neurosci 14:217–223Google Scholar
  44. 44.
    Blinder KJ, Pumplin DW, Paul DL et al (2003) Intercellular interactions in the mammalian olfactory nerve. J Comp Neurol 466:230–239PubMedCrossRefGoogle Scholar
  45. 45.
    Bokil H, Laaris N, Blinder K et al (2001) Ephaptic interactions in the mammalian olfactory system. J Neurosci 21:RC173PubMedGoogle Scholar
  46. 46.
    Ren J, Momose-Sato Y, Sato K et al (2006) Rhythmic neuronal discharge in the medulla and spinal cord of fetal rats in the absence of synaptic transmission. J Neurophysiol 95:527–534PubMedCrossRefGoogle Scholar
  47. 47.
    Vreugdenhil M, Bracci E, Jefferys JG (2005) Layer-specific pyramidal cell oscillations evoked by tetanic stimulation in the rat hippocampal area CA1 in vitro and in vivo. J Physiol 562:149–164PubMedCrossRefGoogle Scholar
  48. 48.
    Hinner MJ, Hubener G, Fromherz P (2004) Enzyme-induced staining of biomembranes with voltage-sensitive fluorescent dyes. J Phys Chem B 108:2445–2453PubMedCrossRefGoogle Scholar
  49. 49.
    Ng DN, Fromherz P (2011) Genetic targeting of a voltage-sensitive dye by enzymatic activation of phosphonooxymethyl-ammonium derivative. ACS Chem Biol 6:444–451Google Scholar
  50. 50.
    Akemann W, Mutoh H, Perron A, Rossier J, Knöpfel T (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649Google Scholar
  51. 51.
    Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451PubMedCrossRefGoogle Scholar
  52. 52.
    Kerr JN, Greenberg D, Helmchen F (2005) Imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci USA 102:14063–14068PubMedCrossRefGoogle Scholar
  53. 53.
    Pettersen KH, Devor A, Ulbert I et al (2006) Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities. J Neurosci Methods 154:116–133PubMedCrossRefGoogle Scholar
  54. 54.
    Dombeck DA, Blanchard-Desce M, Webb WW (2004) Optical recording of action potentials with second-harmonic generation microscopy. J Neurosci 24:999PubMedCrossRefGoogle Scholar
  55. 55.
    Fisher JAN, Salzberg BM, Yodh AG (2005) Near infrared two-photon excitation cross-sections of voltage-sensitive dyes. J Neurosci Methods 148:94–102PubMedCrossRefGoogle Scholar
  56. 56.
    Kuhn B, Denk W, Bruno RM (2008) In vivo two-photon voltage-sensitive dye imaging reveals top-down control of cortical layers 1 and 2 during wakefulness. Proc Natl Acad Sci USA 105:7588–7593PubMedCrossRefGoogle Scholar
  57. 57.
    Fisher JAN, Barchi JR, Welle CG, Kim GH, Kosterin P, Obaid AL, Yodh AG, Contreras D, Salzberg BM (2008) Two-photon excitation of potentiometric probes enables optical recording of action potentials from mammalian nerve terminals in situ. J Neurophysiol 99:1545–1553Google Scholar
  58. 58.
    Petersen CCH (2011) Voltage-sensitive dye imaging of cortical spatiotemporal dynamics in awake behaving mice. In Helmchen F and Konnerth A (eds) Imaging in Neuroscience: A Laboratory Manual. CSHL Press, New YorkGoogle Scholar
  59. 59.
    Dombeck DA, Khabbaz AN, Collman F et al (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56:43–57PubMedCrossRefGoogle Scholar
  60. 60.
    Mohajerani MH, McVea DA, Fingas M et al (2010) Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J Neurosci 30:3745–3751PubMedCrossRefGoogle Scholar
  61. 61.
    Cohen D, Yarom Y (1998) Patches of synchronized activity in the cerebellar cortex evoked by mossy-fiber stimulation: questioning the role of parallel fibers. Proc Natl Acad Sci USA 95:15032–15036PubMedCrossRefGoogle Scholar
  62. 62.
    Lippert MT, Takagaki K, Xu W et al (2007) Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio. J Neurophysiol 98:502–512PubMedCrossRefGoogle Scholar
  63. 63.
    Devor A, Dunn AK, Andermann ML et al (2003) Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39:353–359PubMedCrossRefGoogle Scholar
  64. 64.
    Frostig RD, Lieke EE, Ts’o DY et al (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci USA 87:6082–6086PubMedCrossRefGoogle Scholar
  65. 65.
    Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 3:164–169PubMedCrossRefGoogle Scholar
  66. 66.
    Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Eugene F. Civillico
    • 1
  1. 1.CNS Drug Discovery and DevelopmentOtsuka Maryland Medicinal LaboratoriesRockvilleUSA

Personalised recommendations