Advertisement

An Introduction to In Vitro Slice Approaches for the Study of Neuronal Circuitry

  • Carmen Varela
  • Daniel A. Llano
  • Brian B. Theyel
Protocol
Part of the Neuromethods book series (NM, volume 67)

Abstract

The acute slice preparation can be a powerful tool to study brain networks that would otherwise be difficult to manipulate at the synaptic and cellular levels. In the first part of this chapter, we discuss the specific challenges of preparing brain slices to study neural networks, and we review solutions to overcome problems that can be faced during slice preparation and maintenance. In addition, we describe slice preparations that preserve the connectivity between multiple brain areas, such as hippocampal and thalamocortical slices.

In the second part, we introduce several techniques that can be used to stimulate specific cells or networks in acute slices. We begin by reviewing methods for electrical stimulation, glutamate-based stimulation, and optogenetic stimulation. An additional procedure that combines the use of laser photostimulation with flavoprotein autofluorescence is also presented. We discuss advantages and disadvantages of these methods for neural network investigation in the acute slice preparation.

Key words

Slice preparation Slice maintenance Electrical stimulation Laser photostimulation Optogenetic stimulation Flavoprotein autofluorescence 

Notes

Acknowledgments

We thank Jennie Z. Young and Iraklis Petrof for helpful comments on this chapter.

References

  1. 1.
    Elliot K, Wolfe L (1962) Brain tissue respiration and glycolysis. In: Thomas C (ed) Neurochemistry, 3rd edn. Springfield, IllinoisGoogle Scholar
  2. 2.
    McIlwain H, Cheshire J (1950) Metabolic maintenance of the inorganic and creatine phosphates of brain tissue in vitro. Biochem J 47:xviiiPubMedGoogle Scholar
  3. 3.
    Buchel L, McIlwain H (1950) Narcotics and the inorganic and creatine phosphates of mammalian brain. Br J Pharmacol Chemother 5:465–473PubMedGoogle Scholar
  4. 4.
    McIlwain H, Buchel L, Cheshire J (1951) The inorganic phosphate and phosphocreatine of Brain especially during metabolism in vitro. Biochem J 48:12–20PubMedGoogle Scholar
  5. 5.
    Li CL, McIlwain H (1957) Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. J Physiol 139:178–190PubMedGoogle Scholar
  6. 6.
    Hillman HH, McIlwain H (1961) Membrane potentials in mammalian cerebral tissues in vitro: dependence on ionic environment. J Physiol 157:263–278PubMedGoogle Scholar
  7. 7.
    Yamamoto C, McIlwain H (1966) Potentials evoked in vitro in preparations from the mammalian brain. Nature 210:1055–1056PubMedCrossRefGoogle Scholar
  8. 8.
    Gahwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4:329–342PubMedCrossRefGoogle Scholar
  9. 9.
    Rambani K, Vukasinovic J, Glezer A et al (2009) Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability. J Neurosci Methods 180:243–254PubMedCrossRefGoogle Scholar
  10. 10.
    Gahwiler BH, Capogna M, Debanne D et al (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20:471–477PubMedCrossRefGoogle Scholar
  11. 11.
    Gahwiler BH, Thompson SM, Muller D (1999) Preparation and maintenance of organotypic slice cultures of CNS tissue. Curr Protoc Neurosci 6:6.11.1–6.11.11Google Scholar
  12. 12.
    Noraberg J, Poulsen FR, Blaabjerg M et al (2005) Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. Curr Drug Targets CNS Neurol Disord 4:435–452PubMedCrossRefGoogle Scholar
  13. 13.
    Hatton GI, Doran AD, Salm AK et al (1980) Brain slice preparation: hypothalamus. Brain Res Bull 5:405–414PubMedCrossRefGoogle Scholar
  14. 14.
    Alger B, Dhanjal S, Dingledine R et al (1984) Brain slice methods. In: Dingledine R (ed) Brain slices, 1st edn. Plenum Press, New YorkGoogle Scholar
  15. 15.
    Reid KH, Edmonds HL Jr, Schurr A et al (1988) Pitfalls in the use of brain slices. Prog Neurobiol 31:1–18PubMedCrossRefGoogle Scholar
  16. 16.
    Edwards FA, Konnerth A, Sakmann B et al (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch 414:600–612PubMedCrossRefGoogle Scholar
  17. 17.
    Finkel A, Bookman R (1997) The electrophysiology setup. Curr Protoc Neurosci 6:6.1.1–6.1.6Google Scholar
  18. 18.
    Moyer J, Brown T (2002) Patch-clamp techniques applied to brain slices. In: Walz W et al (eds) Patch-clamp analysis: advanced techniques, Ith edn. Humana Press, Totowa, New JerseyGoogle Scholar
  19. 19.
    Debanne D, Boudkkazi S, Campanac E et al (2008) Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices. Nat Protoc 3:1559–1568PubMedCrossRefGoogle Scholar
  20. 20.
    Ramcharan EJ, Gnadt JW, Sherman SM (2000) Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys. Vis Neurosci 17:55–62PubMedCrossRefGoogle Scholar
  21. 21.
    Briggs F, Callaway EM (2001) Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex. J Neurosci 21:3600–3608PubMedGoogle Scholar
  22. 22.
    Zarrinpar A, Callaway EM (2006) Local connections to specific types of layer 6 neurons in the rat visual cortex. J Neurophysiol 95:1751–1761PubMedCrossRefGoogle Scholar
  23. 23.
    McCormick DA, Trent F, Ramoa AS (1995) Postnatal development of synchronized network oscillations in the ferret dorsal lateral geniculate and perigeniculate nuclei. J Neurosci 15:5739–5752PubMedGoogle Scholar
  24. 24.
    Brumberg JC, Nowak LG, McCormick DA (2000) Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. J Neurosci 20:4829–4843PubMedGoogle Scholar
  25. 25.
    Llano DA, Sherman SM (2009) Differences in intrinsic properties and local network connectivity of identified layer 5 and layer 6 adult mouse auditory corticothalamic neurons support a dual corticothalamic projection hypothesis. Cereb Cortex 19:2810–2826PubMedCrossRefGoogle Scholar
  26. 26.
    Reyes A, Sakmann B (1999) Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex. J Neurosci 19:3827–3835PubMedGoogle Scholar
  27. 27.
    Choi DW (1994) Calcium and excitotoxic neuronal injury. Ann N Y Acad Sci 747:162–171PubMedCrossRefGoogle Scholar
  28. 28.
    Rothman SM (1985) The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci 5:1483–1489PubMedGoogle Scholar
  29. 29.
    Syntichaki P, Tavernarakis N (2003) The biochemistry of neuronal necrosis: rogue biology? Nat Rev Neurosci 4:672–684PubMedCrossRefGoogle Scholar
  30. 30.
    Aghajanian GK, Rasmussen K (1989) Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3:331–338PubMedCrossRefGoogle Scholar
  31. 31.
    Lehmann A, Jacobson I (1990) Ion dependence and receptor mediation of glutamate toxicity in the immature rat hippocampal slice. Eur J Neurosci 2:620–628PubMedCrossRefGoogle Scholar
  32. 32.
    Clark GD, Rothman SM (1987) Blockade of excitatory amino acid receptors protects anoxic hippocampal slices. Neuroscience 21:665–671PubMedCrossRefGoogle Scholar
  33. 33.
    Rothman SM, Thurston JH, Hauhart RE et al (1987) Ketamine protects hippocampal neurons from anoxia in vitro. Neuroscience 21:673–678PubMedCrossRefGoogle Scholar
  34. 34.
    Aitken PG, Breese GR, Dudek FF et al (1995) Preparative methods for brain slices: a discussion. J Neurosci Methods 59:139–149PubMedCrossRefGoogle Scholar
  35. 35.
    Strasser U, Lobner D, Behrens MM et al (1998) Antagonists for group I mGluRs attenuate excitotoxic neuronal death in cortical cultures. Eur J Neurosci 10:2848–2855PubMedCrossRefGoogle Scholar
  36. 36.
    Feig S, Lipton P (1990) N-methyl-D-aspartate receptor activation and Ca2+ account for poor pyramidal cell structure in hippocampal slices. J Neurochem 55:473–483PubMedCrossRefGoogle Scholar
  37. 37.
    Rice ME (1999) Use of ascorbate in the preparation and maintenance of brain slices. Methods 18:144–149PubMedCrossRefGoogle Scholar
  38. 38.
    Mattson MP (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 21:53–57PubMedCrossRefGoogle Scholar
  39. 39.
    Pedersen JZ, Bernardi G, Centonze D et al (1998) Hypoglycemia, hypoxia, and ischemia in a corticostriatal slice preparation: electrophysiologic changes and ascorbyl radical formation. J Cereb Blood Flow Metab 18:868–875PubMedCrossRefGoogle Scholar
  40. 40.
    Bell JL, McIlwain H, Thomas J (1956) The composition of isolated cerebral tissues; ascorbic acid and cozymase. Biochem J 64:332–335PubMedGoogle Scholar
  41. 41.
    Kovachich GB, Mishra OP (1983) The effect of ascorbic acid on malonaldehyde formation, K+, Na+ and water content of brain slices. Exp Brain Res 50:62–68PubMedCrossRefGoogle Scholar
  42. 42.
    Rice ME, Perez-Pinzon MA, Lee EJ (1994) Ascorbic acid, but not glutathione, is taken up by brain slices and preserves cell morphology. J Neurophysiol 71:1591–1596PubMedGoogle Scholar
  43. 43.
    Brahma B, Forman RE, Stewart EE et al (2000) Ascorbate inhibits edema in brain slices. J Neurochem 74:1263–1270PubMedCrossRefGoogle Scholar
  44. 44.
    Skrede KK, Westgaard RH (1971) The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Res 35:589–593PubMedCrossRefGoogle Scholar
  45. 45.
    Lynch G, Schubert P (1980) The use of in vitro brain slices for multidisciplinary studies of synaptic function. Annu Rev Neurosci 3:1–22PubMedCrossRefGoogle Scholar
  46. 46.
    Sayer RJ, Redman SJ, Andersen P (1989) Amplitude fluctuations in small EPSPs recorded from CA1 pyramidal cells in the guinea pig hippocampal slice. J Neurosci 9:840–850PubMedGoogle Scholar
  47. 47.
    Walther H, Lambert JD, Jones RS et al (1986) Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neurosci Lett 69:156–161PubMedCrossRefGoogle Scholar
  48. 48.
    Jones RS, Heinemann U (1988) Synaptic and intrinsic responses of medical entorhinal cortical cells in normal and magnesium-free medium in vitro. J Neurophysiol 59:1476–1496PubMedGoogle Scholar
  49. 49.
    Dreier JP, Heinemann U (1990) Late low magnesium-induced epileptiform activity in rat entorhinal cortex slices becomes insensitive to the anticonvulsant valproic acid. Neurosci Lett 119:68–70PubMedCrossRefGoogle Scholar
  50. 50.
    Boulton CL, von Haebler D, Heinemann U (1992) Tracing of axonal connections by rhodamine-dextran-amine in the rat hippocampal-entorhinal cortex slice preparation. Hippocampus 2:99–106PubMedCrossRefGoogle Scholar
  51. 51.
    Empson RM, Heinemann U (1995) The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice. J Physiol 484(Pt 3):707–720PubMedGoogle Scholar
  52. 52.
    Agmon A, Connors BW (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41:365–379PubMedCrossRefGoogle Scholar
  53. 53.
    Metherate R, Cruikshank SJ (1999) Thalamocortical inputs trigger a propagating envelope of gamma-band activity in auditory cortex in vitro. Exp Brain Res 126:160–174PubMedCrossRefGoogle Scholar
  54. 54.
    Cruikshank SJ, Rose HJ, Metherate R (2002) Auditory thalamocortical synaptic transmission in vitro. J Neurophysiol 87:361–384PubMedGoogle Scholar
  55. 55.
    MacLean JN, Fenstermaker V, Watson BO et al (2006) A visual thalamocortical slice. Nat Methods 3:129–134PubMedCrossRefGoogle Scholar
  56. 56.
    Lee CM, Chang WC, Chang KB et al (2007) Synaptic organization and input-specific short-term plasticity in anterior cingulate cortical neurons with intact thalamic inputs. Eur J Neurosci 25:2847–2861PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang L, Jones EG (2004) Corticothalamic inhibition in the thalamic reticular nucleus. J Neurophysiol 91:759–766PubMedCrossRefGoogle Scholar
  58. 58.
    Lam YW, Sherman SM (2010) Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. Cereb Cortex 20(1):13–24PubMedCrossRefGoogle Scholar
  59. 59.
    Laaris N, Carlson GC, Keller A (2000) Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging. J Neurosci 20:1529–1537PubMedGoogle Scholar
  60. 60.
    Llinás RR, Leznik E, Urbano FJ (2002) Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci U S A 99:449–454PubMedCrossRefGoogle Scholar
  61. 61.
    Theyel BB, Lee CC, Sherman SM (2010) Specific and nonspecific thalamocortical connectivity in the auditory and somatosensory thalamocortical slices. Neuroreport 21:861–864PubMedCrossRefGoogle Scholar
  62. 62.
    Llano DA, Theyel BB, Mallik AK (2009) Rapid and sensitive mapping of long-range connections in vitro using flavoprotein autofluorescence imaging combined with laser photostimulation. J Neurophysiol 101:3325–3340PubMedCrossRefGoogle Scholar
  63. 63.
    Shao Z, Burkhalter A (1996) Different balance of excitation and inhibition in forward and feedback circuits of rat visual cortex. J Neurosci 16:7353–7365PubMedGoogle Scholar
  64. 64.
    Dong H, Shao Z, Nerbonne JM et al (2004) Differential depression of inhibitory synaptic responses in feedforward and feedback circuits between different areas of mouse visual cortex. J Comp Neurol 475:361–373PubMedCrossRefGoogle Scholar
  65. 65.
    Finnerty GT, Roberts LS, Connors BW (1999) Sensory experience modifies the short-term dynamics of neocortical synapses. Nature 400:367–371PubMedCrossRefGoogle Scholar
  66. 66.
    Petrof I, Sherman SM (2009) Synaptic properties of the mammillary and cortical afferents to the anterodorsal thalamic nucleus in the mouse. J Neurosci 29:7815–7819PubMedCrossRefGoogle Scholar
  67. 67.
    Lee CC, Sherman SM (2010) Topography and physiology of ascending streams in the auditory tectothalamic pathway. Proc Natl Acad Sci U S A 107:372–377PubMedCrossRefGoogle Scholar
  68. 68.
    Garthwaite J, Batchelor AM (1996) A biplanar slice preparation for studying cerebellar synaptic transmission. J Neurosci Methods 64:189–197PubMedCrossRefGoogle Scholar
  69. 69.
    Turner JP, Salt TE (1998) Characterization of sensory and corticothalamic excitatory inputs to rat thalamocortical neurones in vitro. J Physiol 510(Pt 3):829–843PubMedCrossRefGoogle Scholar
  70. 70.
    Matthews RT, Coker O, Winder DG (2004) A novel mouse brain slice preparation of the hippocampo-accumbens pathway. J Neurosci Methods 137:49–60PubMedCrossRefGoogle Scholar
  71. 71.
    Vogt BA, Gorman AL (1982) Responses of cortical neurons to stimulation of corpus callosum in vitro. J Neurophysiol 48:1257–1273PubMedGoogle Scholar
  72. 72.
    Petreanu L, Huber D, Sobczyk A et al (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663–668PubMedCrossRefGoogle Scholar
  73. 73.
    Lipton P, Whittingham T (1984) Energy metabolism and brain slice function. In: Dingledine R (ed) Brain slices, 1st edn. Plenum Press, New YorkGoogle Scholar
  74. 74.
    Hajos N, Ellender TJ, Zemankovics R et al (2009) Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur J Neurosci 29:319–327PubMedCrossRefGoogle Scholar
  75. 75.
    Hajos N, Mody I (2009) Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content. J Neurosci Methods 183:107–113PubMedCrossRefGoogle Scholar
  76. 76.
    Schwartzkroin P (1977) Further characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res 128:53–68PubMedCrossRefGoogle Scholar
  77. 77.
    Schwartzkroin P, Altschuler R (1977) Development of kitten hippocampal neurons. Brain Res 134:429–444PubMedCrossRefGoogle Scholar
  78. 78.
    Thompson SM, Masukawa LM, Prince DA (1985) Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro. J Neurosci 5:817–824PubMedGoogle Scholar
  79. 79.
    McCormick DA, Prince DA (1987) Post-natal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. J Physiol 393:743–762PubMedGoogle Scholar
  80. 80.
    Cepeda C, Walsh JP, Buchwald NA et al (1991) Neurophysiological maturation of cat caudate neurons: evidence from in vitro studies. Synapse 7:278–290PubMedCrossRefGoogle Scholar
  81. 81.
    Ramoa AS, McCormick DA (1994) Developmental changes in electrophysiological properties of LGNd neurons during reorganization of retinogeniculate connections. J Neurosci 14:2089–2097PubMedGoogle Scholar
  82. 82.
    Connors BW, Gutnick MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48:1302–1320PubMedGoogle Scholar
  83. 83.
    McCormick DA, Connors BW, Lighthall JW et al (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806PubMedGoogle Scholar
  84. 84.
    Yang CR, Seamans JK, Gorelova N (1996) Electrophysiological and morphological properties of layers V-VI principal pyramidal cells in rat prefrontal cortex in vitro. J Neurosci 16:1904–1921PubMedGoogle Scholar
  85. 85.
    Nowak LG, Azouz R, Sánchez-Vives MV et al (2003) Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. J Neurophysiol 89:1541–1566PubMedCrossRefGoogle Scholar
  86. 86.
    Crunelli V, Hughes SW (2010) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13(1):9–17PubMedCrossRefGoogle Scholar
  87. 87.
    Smith GD, Cox CL, Sherman SM et al (2000) Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J Neurophysiol 83:588–610PubMedGoogle Scholar
  88. 88.
    Li J, Bickford ME, Guido W (2003) Distinct firing properties of higher order thalamic relay neurons. J Neurophysiol 90:291–299PubMedCrossRefGoogle Scholar
  89. 89.
    Landisman CE, Connors BW (2007) VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. Cereb Cortex 17:2853–2865PubMedCrossRefGoogle Scholar
  90. 90.
    Mukherjee P, Kaplan E (1995) Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. J Neurophysiol 74:1222–1243PubMedGoogle Scholar
  91. 91.
    Bennett BD, Wilson CJ (1999) Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci 19:5586–5596PubMedGoogle Scholar
  92. 92.
    Wilson CJ, Chang HT, Kitai ST (1990) Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci 10:508–519PubMedGoogle Scholar
  93. 93.
    Sánchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034PubMedCrossRefGoogle Scholar
  94. 94.
    Konopacki J, Golebiewski H, Eckersdorf B et al (2000) In vitro recorded theta-like activity in the limbic cortex: comparison with spontaneous theta and epileptiform discharges. Acta Neurobiol Exp (Wars) 60:67–85Google Scholar
  95. 95.
    von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361–364CrossRefGoogle Scholar
  96. 96.
    Shaw C, Teyler TJ (1982) The neural circuitry of the neocortex examined in the in vitro brain slice preparation. Brain Res 243:35–47PubMedCrossRefGoogle Scholar
  97. 97.
    Cox DW, Bachelard HS (1982) Attenuation of evoked field potentials from dentate granule cells by low glucose, pyruvate +malate, and sodium fluoride. Brain Res 239:527–534PubMedCrossRefGoogle Scholar
  98. 98.
    Holmgren CD, Mukhtarov M, Malkov AE et al (2010) Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro. J Neurochem 112:900–912PubMedCrossRefGoogle Scholar
  99. 99.
    Tsumoto T (1992) Long-term potentiation and long-term depression in the neocortex. Prog Neurobiol 39:209–228PubMedCrossRefGoogle Scholar
  100. 100.
    Steriade M (2001) Impact of network activities on neuronal properties in corticothalamic systems. J Neurophysiol 86:1–39PubMedGoogle Scholar
  101. 101.
    Davis GW (2006) Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev Neurosci 29:307–323PubMedCrossRefGoogle Scholar
  102. 102.
    Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35:773–782PubMedCrossRefGoogle Scholar
  103. 103.
    Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503–1506PubMedCrossRefGoogle Scholar
  104. 104.
    Madison DV, Nicoll RA (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299:636–638PubMedCrossRefGoogle Scholar
  105. 105.
    Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 354:319–331PubMedGoogle Scholar
  106. 106.
    Goaillard JM, Vincent P (2002) Serotonin suppresses the slow afterhyperpolarization in rat intralaminar and midline thalamic neurones by activating 5-HT(7) receptors. J Physiol 541:453–465PubMedCrossRefGoogle Scholar
  107. 107.
    Marder E, Thirumalai V (2002) Cellular, synaptic and network effects of neuromodulation. Neural Netw 15:479–493PubMedCrossRefGoogle Scholar
  108. 108.
    Ranck JJB (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98(3):417–440PubMedCrossRefGoogle Scholar
  109. 109.
    Neagu B, Strominger NL, Carpenter DO (2005) Use of bipolar parallel electrodes for well-controlled microstimulation in a mouse hippocampal brain slice. J Neurosci Methods 144(2):153–163PubMedCrossRefGoogle Scholar
  110. 110.
    Heck D (1995) Investigating dynamic aspects of brain function in slice preparations: spatiotemporal stimulus patterns generated with an easy-to-build multi-electrode array. J Neurosci Methods 58(1–2):81–87PubMedCrossRefGoogle Scholar
  111. 111.
    Heuschkel MO, Fejtl M, Raggenbass M et al (2002) A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J Neurosci Methods 114(2):135–148PubMedCrossRefGoogle Scholar
  112. 112.
    Tass PA, Silchenko AN, Hauptmann C et al (2009) Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation. Phys Rev E 80(1):011902CrossRefGoogle Scholar
  113. 113.
    Nowak LG, Bullier J (1998) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter I. Evidence from chronaxie measurements. Exp Brain Res 118(4):477–488PubMedCrossRefGoogle Scholar
  114. 114.
    Nowak LG, Bullier J (1998) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter II. Evidence from selective inactivation of cell bodies and axon initial segments. Exp Brain Res 118(4):489–500PubMedCrossRefGoogle Scholar
  115. 115.
    FitzGerald JJ, Lacour SP, McMahon SB et al (2009) Microchannel electrodes for recording and stimulation: in vitro evaluation. IEEE Trans Biomed Eng 56(5):1524–1534PubMedCrossRefGoogle Scholar
  116. 116.
    Fang ZP, Mortimer JT (1991) A method to effect physiological recruitment order in electrically activated muscle. IEEE Trans Biomed Eng 38(2):175–179PubMedCrossRefGoogle Scholar
  117. 117.
    Fang Z-P, Mortimer J (1991) Alternate excitation of large and small axons with different stimulation waveforms: an application to muscle activation. Med Biol Eng Comput 29(5):543–547PubMedCrossRefGoogle Scholar
  118. 118.
    Grill WM, Mortimer JT (1993) Selective activation of distant nerve fibers. In: Engineering in Medicine and Biology Society. Proceedings of the 15th Annual International Conference of the IEEEGoogle Scholar
  119. 119.
    Grill WM, Mortimer JT (1995) Stimulus waveforms for selective neural stimulation. IEEE Eng Med Biol 14(4):375–385CrossRefGoogle Scholar
  120. 120.
    Grill WM, Mortimer JT (1997) Inversion of the current-distance relationship by transient depolarization. IEEE Trans Biomed Eng 44(1):1–9PubMedCrossRefGoogle Scholar
  121. 121.
    McCaman RE, McKenna DG, Ono JK (1977) A pressure system for intracellular and extracellular ejections of picoliter volumes. Brain Res 136:141–147PubMedCrossRefGoogle Scholar
  122. 122.
    Sakai M, Swartz BE, Woody CD (1979) Controlled micro release of pharmacological agents: measurements of volume ejected in vitro through fine tipped glass microelectrodes by pressure. Neuropharmacology 18:209–213PubMedCrossRefGoogle Scholar
  123. 123.
    Cormier RJ, Mauk MD, Kelly PT (1993) Glutamate iontophoresis induces long-term potentiation in the absence of evoked presynaptic activity. Neuron 10:907–919PubMedCrossRefGoogle Scholar
  124. 124.
    Schwindt PC, Crill WE (1997) Local and propagated dendritic action potentials evoked by glutamate iontophoresis on rat neocortical pyramidal neurons. J Neurophysiol 77:2466–2483PubMedGoogle Scholar
  125. 125.
    Cash S, Yuste R (1999) Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22:383–394PubMedCrossRefGoogle Scholar
  126. 126.
    Milojkovic BA, Radojicic MS, Goldman-Rakic PS et al (2004) Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree. J Physiol 558:193–211PubMedCrossRefGoogle Scholar
  127. 127.
    Wilcox M, Viola RW, Johnson KW et al (1990) Synthesis of photolabile precursors of amino acid neurotransmitters. J Org Chem 55(5):1585–1589CrossRefGoogle Scholar
  128. 128.
    Canepari M, Nelson L, Papageorgiou G et al (2001) Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters. J Neurosci Methods 112(1):29–42PubMedCrossRefGoogle Scholar
  129. 129.
    Dantzker JL, Callaway EM (2000) Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat Neurosci 3(7):701PubMedCrossRefGoogle Scholar
  130. 130.
    Pologruto T, Sabatini B, Svoboda K (2003) ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online 2(1):13PubMedCrossRefGoogle Scholar
  131. 131.
    Llano DA, Theyel BB, Mallik AK et al (2009) Rapid and sensitive mapping of long-range connections in vitro using flavoprotein autofluorescence imaging combined with laser photostimulation. J Neurophysiol 101(6):3325–3340PubMedCrossRefGoogle Scholar
  132. 132.
    Shepherd GMG, Pologruto TA, Svoboda K (2003) Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38(2):277–289PubMedCrossRefGoogle Scholar
  133. 133.
    Katz L, Dalva M (1994) Scanning laser photostimulation: a new approach for analyzing brain circuits. J Neurosci Methods 54(2):205–218PubMedCrossRefGoogle Scholar
  134. 134.
    Carter AG, Sabatini BL (2004) State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44(3):483–493PubMedCrossRefGoogle Scholar
  135. 135.
    Matsuzaki M, Ellis-Davies GC, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4(11):1086–1092PubMedCrossRefGoogle Scholar
  136. 136.
    Sobczyk A, Scheuss V, Svoboda K (2005) NMDA receptor subunit-dependent (Ca2+) signaling in individual hippocampal dendritic spines. J Neurosci 25(26):6037–6046PubMedCrossRefGoogle Scholar
  137. 137.
    Fino E, Araya R, Peterka DS et al (2009) RuBi-glutamate: two-photon and visible-light photoactivation of neurons and dendritic spines. Front Neural Circuits 3:1–9CrossRefGoogle Scholar
  138. 138.
    Maier W, Corrie JE, Papageorgiou G et al (2005) Comparative analysis of inhibitory effects of caged ligands for the NMDA receptor. J Neurosci Methods 142:1–9PubMedCrossRefGoogle Scholar
  139. 139.
    Sohal VS, Zhang F, Yizhar O et al (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702PubMedCrossRefGoogle Scholar
  140. 140.
    Lima SQ, Hromádka T, Znamenskiy P et al (2009) PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One 4(7):e6099PubMedCrossRefGoogle Scholar
  141. 141.
    Cruikshank SJ, Urae H, Nurmikko AV et al (2010) Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65(2):230–245PubMedCrossRefGoogle Scholar
  142. 142.
    Bamann C, Kirsch T, Nagel G et al (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375(3):686–694PubMedCrossRefGoogle Scholar
  143. 143.
    Schoenenberger P, Gerosa D, Oertner TG (2009) Temporal control of immediate early gene induction by light. PLoS One 4(12):e8185PubMedCrossRefGoogle Scholar
  144. 144.
    Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945PubMedCrossRefGoogle Scholar
  145. 145.
    Lin JY (2011) A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96(1):19–25PubMedCrossRefGoogle Scholar
  146. 146.
    Cardin JA, Carlén M, Meletis K et al (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of channelrhodopsin-2. Nat Protoc 5(2):247–254PubMedCrossRefGoogle Scholar
  147. 147.
    Airan RD, Hu ES, Vijaykumar R et al (2007) Integration of light-controlled neuronal firing and fast circuit imaging. Curr Opin Neurobiol 17(5):587–592PubMedCrossRefGoogle Scholar
  148. 148.
    Gradinaru V, Zhang F, Ramakrishnan C et al (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165PubMedCrossRefGoogle Scholar
  149. 149.
    Shibuki K, Hishida R, Murakami H et al (2003) Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence. J Physiol 549(3):919–927PubMedCrossRefGoogle Scholar
  150. 150.
    Hopt A, Neher E (2001) Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys J 80(4):2029–2036PubMedCrossRefGoogle Scholar
  151. 151.
    Obaid AL, Loew LM, Wuskell JP et al (2004) Novel naphthylstyryl-pyridinium potentiometric dyes offer advantages for neural network analysis. J Neurosci Methods 134(2):179–190PubMedCrossRefGoogle Scholar
  152. 152.
    Kass IS, Abramowicz AE, Cottrell JE et al (1992) The barbiturate thiopental reduces ATP levels during anoxia but improves electrophysiological recovery and ionic homeostasis in the rat hippocampal slice. Neuroscience 49(3):537–543PubMedCrossRefGoogle Scholar
  153. 153.
    Christie BR, Eliot LS, Ito K et al (1995) Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx. J Neurophysiol 73(6):2553–2557PubMedGoogle Scholar
  154. 154.
    Sasaki R, Hirota K, Roth SH et al (2005) Anoxic depolarization of rat hippocampal slices is prevented by thiopental but not by propofol or isoflurane. Br J Anaesth 94(4):486–491PubMedCrossRefGoogle Scholar
  155. 155.
    Wang T, Raley-Susman KM, Wang J et al (1999) Thiopental attenuates hypoxic changes of electrophysiology, biochemistry, and morphology in rat hippocampal slice CA1 pyramidal cells. Stroke 30(11): 2400–2407PubMedCrossRefGoogle Scholar
  156. 156.
    Shibata S, Kagami-ishi Y, Ueki S et al (1992) Neuroprotective effect of WEB 1881 FU (nebracetam) on an ischemia-induced deficit of glucose uptake in rat hippocampal and cerebral cortical slices and CA1 field potential in hippocampal slices. Jpn J Pharmacol 58(3):243–250PubMedCrossRefGoogle Scholar
  157. 157.
    Boening JA, Kass IS, Cottrell JE et al (1989) The effect of blocking sodium influx on anoxic damage in the rat hippocampal slice. Neuroscience 33(2):263–268PubMedCrossRefGoogle Scholar
  158. 158.
    Piccolino M, Pignatelli A (1996) Calcium-independent synaptic transmission: artifact or fact? Trends Neurosci 19(4):120–125PubMedCrossRefGoogle Scholar
  159. 159.
    Kuenzi FM, Fitzjohn SM, Morton RA et al (2000) Reduced long-term potentiation in hippocampal slices prepared using sucrose-based artificial cerebrospinal fluid. J Neurosci Methods 100(1–2):117–122PubMedCrossRefGoogle Scholar
  160. 160.
    Magee JC, Avery RB, Christie BR et al (1996) Dihydropyridine-sensitive, voltage-gated Ca2+ channels contribute to the resting intracellular Ca2+ concentration of hippocampal CA1 pyramidal neurons. J Neurophysiol 76(5):3460–3470PubMedGoogle Scholar
  161. 161.
    Hoffman DA, Johnston D (1998) Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J Neurosci 18(10):3521–3528PubMedGoogle Scholar
  162. 162.
    Mainen ZF, Maletic-Savatic M, Shi SH et al (1999) Two-photon imaging in living brain slices. Methods 18(2):231–239, 181PubMedCrossRefGoogle Scholar
  163. 163.
    Schurr A, Payne RS, Miller JJ et al (1997) Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69(1):423–426PubMedCrossRefGoogle Scholar
  164. 164.
    Yamane K, Yokono K, Okada Y (2000) Anaerobic glycolysis is crucial for the maintenance of neural activity in guinea pig hippocampal slices. J Neurosci Methods 103(2):163–171PubMedCrossRefGoogle Scholar
  165. 165.
    Cater HL, Chandratheva A, Benhan CD et al (2003) Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices. J Neurochem 87(6):1381–1390PubMedCrossRefGoogle Scholar
  166. 166.
    Matthews CC, Zielke HR, Parks DA et al (2003) Glutamate-pyruvate transaminase protects against glutamate toxicity in hippocampal slices. Brain Res 978(1–2):59–64PubMedCrossRefGoogle Scholar
  167. 167.
    Merrill DR, Bikson M, Jefferys JGR (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141(2):171–198PubMedCrossRefGoogle Scholar
  168. 168.
    Jensen AL, Durand DM (2009) High frequency stimulation can block axonal conduction. Exp Neurol 220(1):57–70PubMedCrossRefGoogle Scholar
  169. 169.
    Fang ZP, Mortimer JT (1991) Selective activation of small motor axons by quasitrapezoidal current pulses. IEEE Trans Biomed Eng 38(2):168–174PubMedCrossRefGoogle Scholar
  170. 170.
    Millar J, Barnett TG (1997) The Zeta pulse: a new stimulus waveform for use in electrical stimulation of the nervous system. J Neurosci Methods 77(1):1–8PubMedCrossRefGoogle Scholar
  171. 171.
    Callaway EM, Katz L (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci U S A 90(16):7661–7665PubMedCrossRefGoogle Scholar
  172. 172.
    Christian EP, Dudek FE (1988) Characteristics of local excitatory circuits studied with glutamate microapplication in the CA3 area of rat hippocampal slices. J Neurophysiol 59(1):90–109PubMedGoogle Scholar
  173. 173.
    Goodchild AK, Dampney RA, Bandler R (1982) A method for evoking physiological responses by stimulation of cell bodies, but not axons of passage, within localized regions of the central nervous system. J Neurosci Methods 6(4):351–363PubMedCrossRefGoogle Scholar
  174. 174.
    Zhang F, Gradinaru V, Adamantidis AR et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5(3):439–456PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Carmen Varela
    • 1
  • Daniel A. Llano
    • 1
  • Brian B. Theyel
    • 1
  1. 1.Picower Institute for Learning and MemoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations