Two-Photon Imaging of Neural Activity in Awake, Head-Restrained Mice

  • Martin Wienisch
  • David G. Blauvelt
  • Tomokazu F. Sato
  • Venkatesh N. Murthy
Part of the Neuromethods book series (NM, volume 67)


Two-photon microscopy has become an invaluable tool for visualizing the activity of neuronal populations at cellular resolution in vivo. Imaging typically requires restraining the head of the animal underneath the objective of a dedicated optical setup and experiments are therefore often performed under anesthesia. Here, we describe a method that allows imaging in awake mice with minimal motion artifacts and without the need for extensive training of the animal. We detail the necessary surgical procedures to chronically implant a small, lightweight headplate and to create a clear window for imaging. The design of a simple apparatus capable of stably accommodating the headplate while the mouse is positioned on a wheel with spring suspension is presented. When used in combination with a multiphoton microscope, this approach greatly facilitates optical recordings in nonanesthetized animals and opens the door to many projects that can bridge the gap between neural activity and behavior.

Key words

Multiphoton imaging In vivo Mouse Brain Microscopy Neural activity Awake Anesthetized Laser scanning Neural ensemble Head restrained 



This work was supported, in part, by a Human Frontier Science Foundation fellowship (M.W.), and by Harvard University (V.N.M.).


  1. 1.
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76PubMedCrossRefGoogle Scholar
  2. 2.
    Grewe BF, Helmchen F (2009) Optical probing of neuronal ensemble activity. Curr Opin Neurobiol 19:520–529PubMedCrossRefGoogle Scholar
  3. 3.
    Ohki K, Chung S, Ch’ng YH et al (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603PubMedCrossRefGoogle Scholar
  4. 4.
    Rinberg D, Koulakov A, Gelperin A (2006) Sparse odor coding in awake behaving mice. J Neurosci 26:8857–8865PubMedCrossRefGoogle Scholar
  5. 5.
    Greenberg DS, Houweling AR, Kerr JN (2008) Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nat Neurosci 11:749–751PubMedCrossRefGoogle Scholar
  6. 6.
    Hara K, Harris RA (2002) The anesthetic mechanism of urethane: the effects on neurotransmitter-gated ion channels. Anesth Analg 94:313–318, table of contentsPubMedGoogle Scholar
  7. 7.
    Petzold GC, Albeanu DF, Sato TF et al (2008) Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron 58:897–910PubMedCrossRefGoogle Scholar
  8. 8.
    Stosiek C, Garaschuk O, Holthoff K et al (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100:7319–7324PubMedCrossRefGoogle Scholar
  9. 9.
    Helmchen F, Fee MS, Tank DW et al (2001) A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron 31:903–912PubMedCrossRefGoogle Scholar
  10. 10.
    Sawinski J, Wallace DJ, Greenberg DS et al (2009) Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci U S A 106:19557–19562PubMedCrossRefGoogle Scholar
  11. 11.
    Komiyama T, Sato TR, O’Connor DH et al (2010) Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464:1182–1186PubMedCrossRefGoogle Scholar
  12. 12.
    Andermann ML, Kerlin AM, Reid RC (2010) Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Front Cell Neurosci 4:3PubMedGoogle Scholar
  13. 13.
    Dombeck DA, Khabbaz AN, Collman F et al (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56:43–57PubMedCrossRefGoogle Scholar
  14. 14.
    Dombeck DA, Graziano MS, Tank DW (2009) Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice. J Neurosci 29:13751–13760PubMedCrossRefGoogle Scholar
  15. 15.
    Nimmerjahn A, Mukamel EA, Schnitzer MJ (2009) Motor behavior activates Bergmann glial networks. Neuron 62:400–412PubMedCrossRefGoogle Scholar
  16. 16.
    Holtmaat A, Bonhoeffer T, Chow DK et al (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144PubMedCrossRefGoogle Scholar
  17. 17.
    Murayama M, Larkum ME (2009) In vivo dendritic calcium imaging with a fiberoptic periscope system. Nat Protoc 4:1551–1559PubMedCrossRefGoogle Scholar
  18. 18.
    Gobel W, Kampa BM, Helmchen F (2007) Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat Methods 4:73–79PubMedCrossRefGoogle Scholar
  19. 19.
    Duemani Reddy G, Kelleher K, Fink R et al (2008) Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat Neurosci 11:713–720PubMedCrossRefGoogle Scholar
  20. 20.
    Dombeck DA, Harvey CD, Tian L et al (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13(11):1433–1440PubMedCrossRefGoogle Scholar
  21. 21.
    Tsai PS, Nishimura N, Yoder EJ et al (2002) Principles, design and construction of a two photon scanning microscope for in vitro and in vivo studies. In: Frostig R (ed) Methods for in vivo optical imaging. CRC, Boca Raton, FL, pp 113–171Google Scholar
  22. 22.
    Albeanu DF, Soucy E, Sato TF et al (2008) LED arrays as cost effective and efficient light sources for widefield microscopy. PLoS One 3:e2146PubMedCrossRefGoogle Scholar
  23. 23.
    Mostany R, Portera-Cailliau C (2008) A craniotomy surgery procedure for chronic brain imaging. J Vis Exp (12), e680, DOI: 10.3791/680Google Scholar
  24. 24.
    Yang G, Pan F, Parkhurst CN et al (2010) Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5:201–208PubMedCrossRefGoogle Scholar
  25. 25.
    Mainen ZF, Maletic-Savatic M, Shi SH et al (1999) Two-photon imaging in living brain slices. Methods 18:231–239, 181PubMedCrossRefGoogle Scholar
  26. 26.
    Muller M, Schmidt J, Mironov SL et al (2003) Construction and performance of a custom-built two-photon laser scanning system. J Phys D Appl Phys 36:1747–1757CrossRefGoogle Scholar
  27. 27.
    Nguyen QT, Callamaras N, Hsieh C et al (2001) Construction of a two-photon microscope for video-rate Ca(2+) imaging. Cell Calcium 30:383–393PubMedCrossRefGoogle Scholar
  28. 28.
    Nikolenko V, Nemet B, Yuste R (2003) A two-photon and second-harmonic microscope. Methods 30:3–15PubMedCrossRefGoogle Scholar
  29. 29.
    Majewska A, Yiu G, Yuste R (2000) A custom-made two-photon microscope and deconvolution system. Pflugers Arch 441:398–408PubMedCrossRefGoogle Scholar
  30. 30.
    Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online 2:13PubMedCrossRefGoogle Scholar
  31. 31.
    Nguyen QT, Tsai PS, Kleinfeld D (2006) MPScope: a versatile software suite for multiphoton microscopy. J Neurosci Methods 156:351–359PubMedCrossRefGoogle Scholar
  32. 32.
    Greenberg DS, Kerr JN (2009) Automated correction of fast motion artifacts for two-photon imaging of awake animals. J Neurosci Methods 176:1–15PubMedCrossRefGoogle Scholar
  33. 33.
    Guizar-Sicairos M, Thurman ST, Fienup JR (2008) Efficient subpixel image registration algorithms. Opt Lett 33:156–158PubMedCrossRefGoogle Scholar
  34. 34.
    Diez-Garcia J, Matsushita S, Mutoh H et al (2005) Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein. Eur J Neurosci 22:627–635PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Martin Wienisch
    • 1
  • David G. Blauvelt
    • 2
  • Tomokazu F. Sato
    • 1
  • Venkatesh N. Murthy
    • 1
  1. 1.Molecular and Cellular Biology, Center for Brain ScienceHarvard UniversityCambridgeUSA
  2. 2.Molecular and Cellular BiologyHarvard UniversityCambridgeUSA

Personalised recommendations