Optical Interrogation of Neural Circuits

  • Tycho M. Hoogland
  • Peter Saggau
Part of the Neuromethods book series (NM, volume 67)


From brain slice to freely moving mouse, optical methods are being used to probe single neuron physiology and neural circuit function. Efforts in physics, engineering, and genetics have resulted in novel techniques that permit more refined optical interrogation of brain function. The field of optogenetics has enabled neural activity to be driven by light, while optical read-out of neural activity has been improved in terms of speed, spatial resolution, and imaging depth. Genetically encoded sensors and activators of neural activity can now be expressed in cell subtypes helping us to understand neural circuits with unprecedented detail and specificity. In this chapter, we discuss some of the currently available optical methods while highlighting their relative strengths and weaknesses.

Key words

Two-photon microscopy Acousto-optic deflector Spatial light modulator Calcium indicator Voltage indicator Genetically encoded indicator Caged compound Optogenetics 


  1. 1.
    Cardin JA, Carlén M, Meletis K et al (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of channelrhodopsin-2. Nat Protoc 5(2):247–254PubMedCrossRefGoogle Scholar
  2. 2.
    Tsai H, Zhang F, Adamantidis A et al (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324(5930):1080–1084PubMedCrossRefGoogle Scholar
  3. 3.
    Chow BY, Han X, Dobry AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277):98–102PubMedCrossRefGoogle Scholar
  4. 4.
    Portera-Cailliau C, Weimer RM, De Paola V et al (2005) Diverse modes of axon elaboration in the developing neocortex. PLoS Biol 3(8):e272PubMedCrossRefGoogle Scholar
  5. 5.
    Zuo Y, Yang G, Kwon E, Gan W (2005) Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436(7048):261–265PubMedCrossRefGoogle Scholar
  6. 6.
    De Paola V, Holtmaat A, Knott G et al (2006) Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49(6):861–875PubMedCrossRefGoogle Scholar
  7. 7.
    Holtmaat A, Wilbrecht L, Knott GW et al (2006) Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441(7096):979–983PubMedCrossRefGoogle Scholar
  8. 8.
    Smith SL, Häusser M (2010) Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat Neurosci 13(9):1144–1149PubMedCrossRefGoogle Scholar
  9. 9.
    Dombeck DA, Khabbaz AN, Collman F et al (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56(1):43–57PubMedCrossRefGoogle Scholar
  10. 10.
    Sawinski J, Wallace DJ, Greenberg DS et al (2009) Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci U S A 106(46):19557–19562PubMedCrossRefGoogle Scholar
  11. 11.
    Mukamel EA, Nimmerjahn A, Schnitzer MJ (2009) Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63(6):747–760PubMedCrossRefGoogle Scholar
  12. 12.
    Komiyama T, Sato TR, Connor DH et al (2010) Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464(7292):1182–1186PubMedCrossRefGoogle Scholar
  13. 13.
    Shoham S, O’Connor DH, Sarkisov DV, Wang SS (2005) Rapid neurotransmitter uncaging in spatially defined patterns. Nat Methods 2(11):837–843PubMedCrossRefGoogle Scholar
  14. 14.
    Gasparini S, Magee JC (2008) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26(7):2088–2100CrossRefGoogle Scholar
  15. 15.
    Losavio BE, Iyer V, Patel S, Saggau P (2010) Acousto-optic laser scanning for multi-site photo-stimulation of single neurons in vitro. J Neural Eng 7(4):045002PubMedCrossRefGoogle Scholar
  16. 16.
    Iyer V, Hoogland TM, Saggau P (2006) Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy. J Neurophysiol 95(1):535–545PubMedCrossRefGoogle Scholar
  17. 17.
    Duemani Reddy G, Kelleher K, Fink R, Saggau P (2008) Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat Neurosci 11(6):713–720PubMedCrossRefGoogle Scholar
  18. 18.
    Kirkby PA, Srinivas Nadella KM, Silver RA (2010) A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy. Opt Express 18(13):13721–13745PubMedCrossRefGoogle Scholar
  19. 19.
    Andrasfalvy BK, Zemelman BV, Tang J et al (2010) Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc Natl Acad Sci U S A 107(26): 11981–11986PubMedCrossRefGoogle Scholar
  20. 20.
    Dal Maschio M, Difato F, Beltramo R et al (2010) Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Opt Express 18(18):18720PubMedCrossRefGoogle Scholar
  21. 21.
    Nikolenko V, Watson BO, Araya R et al (2008) SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circ 25. doi: 10.3389/neuro.04.005.2008
  22. 22.
    Papagiakoumou E, Anselmi F, Bègue A et al (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 7(10): 848–854PubMedCrossRefGoogle Scholar
  23. 23.
    Tian L, Hires SA, Mao T et al (2009) Imaging neural activity in worms, flies and mice with improved GcaMP calcium indicators. Nat Methods 6(12):875–881PubMedCrossRefGoogle Scholar
  24. 24.
    Akemann W, Mutoh H, Perron A et al (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7(8):643–649PubMedCrossRefGoogle Scholar
  25. 25.
    Grewe BF, Langer D, Kasper H et al (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7(5):399–405PubMedCrossRefGoogle Scholar
  26. 26.
    Petzold GC, Hagiwara A, Murthy VN (2009) Serotonergic modulation of odor input to the mammalian olfactory bulb. Nat Neurosci 12(6):784–791PubMedCrossRefGoogle Scholar
  27. 27.
    Ferezou I, Haiss F, Gentet LJ et al (2007) Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56(5):907–923PubMedCrossRefGoogle Scholar
  28. 28.
    Komiyama T, Sato TR, O’Connor DH et al (2010) Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464(7292):1182–1186PubMedCrossRefGoogle Scholar
  29. 29.
    Matsuzaki M, Honkura N, Ellis-Davies GC et al (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429(6993):761–766PubMedCrossRefGoogle Scholar
  30. 30.
    Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca(2+) influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13(8):958–966PubMedCrossRefGoogle Scholar
  31. 31.
    Grinvald A, Cohen LB, Lesher S et al (1981) Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124-element photodiode array. J Neurophysiol 45(5):829–840PubMedGoogle Scholar
  32. 32.
    Ross WN, Werman R (1987) Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro. J Physiol 389:319–336PubMedGoogle Scholar
  33. 33.
    Kleinfeld D, Delaney KR (1996) Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J Comp Neurol 375(1):89–108PubMedCrossRefGoogle Scholar
  34. 34.
    White JG, Amos WB, Fordham M (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 105(1): 41–48PubMedCrossRefGoogle Scholar
  35. 35.
    Kaplan JH, Ellis-Davies GC (1988) Photolabile chelators for the rapid photorelease of divalent cations. Proc Natl Acad Sci U S A 85(17):6571–6575PubMedCrossRefGoogle Scholar
  36. 36.
    Callaway EM, Katz LC (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci U S A 90(16):7661–7665PubMedCrossRefGoogle Scholar
  37. 37.
    Petreanu L, Huber D, Sobczyk A et al (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10(5):663–668PubMedCrossRefGoogle Scholar
  38. 38.
    Wang H, Peca J, Matsuzaki M et al (2007) High-speed mapping of synaptic connectivity using photostimulation in channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci U S A 104(19):8143–8148PubMedCrossRefGoogle Scholar
  39. 39.
    Cruikshank SJ, Urabe H, Nurmikko AV, Connors BW et al (2010) Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65(2):230–245PubMedCrossRefGoogle Scholar
  40. 40.
    Huber D, Petreanu L, Ghitani N et al (2008) Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451(7174):61–64PubMedCrossRefGoogle Scholar
  41. 41.
    Douglass AD, Kraves S, Deisseroth K et al (2008) Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol 18(15):1133–1137PubMedCrossRefGoogle Scholar
  42. 42.
    Kravitz AV, Freeze BS, Parker PR et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466(7306):622–626PubMedCrossRefGoogle Scholar
  43. 43.
    Göppert-Mayer M (1931) Über elementarakte mit zwei quantensprüngen. Ann Phys 401(3):273–294CrossRefGoogle Scholar
  44. 44.
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76PubMedCrossRefGoogle Scholar
  45. 45.
    Wu LG, Saggau P (1994) Presynaptic calcium is increased during normal synaptic transmission and paired-pulse facilitation, but not in long-term potentiation in area CA1 of hippocampus. J Neurosci 14(2):645–654PubMedGoogle Scholar
  46. 46.
    Stosiek C, Garaschuk O, Holthoff K et al (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100(12):7319–7324PubMedCrossRefGoogle Scholar
  47. 47.
    Sullivan MR, Nimmerjahn A, Sarkisov DV et al (2005) In vivo calcium imaging of circuit activity in cerebellar cortex. J Neurophysiol 94(2):1636–1644PubMedCrossRefGoogle Scholar
  48. 48.
    Lütcke H, Murayama M, Hahn T et al (2010) Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front Neural Circ. doi: 10.3389/fncir.2010.00009
  49. 49.
    Salomé R, Kremer Y, Dieudonné S et al (2006) Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J Neurosci Methods 154(1–2): 161–174PubMedCrossRefGoogle Scholar
  50. 50.
    Iyer V, Losavio BE, Saggau P (2008) Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. J Biomed Opt 8(3):460–471CrossRefGoogle Scholar
  51. 51.
    Göbel W, Kampa BM, Helmchen F (2007) Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat Methods 4(1):73–79PubMedCrossRefGoogle Scholar
  52. 52.
    Nielsen T, Fricke M, Hellweg D et al (2001) High efficiency beam splitter for multifocal multiphoton microscopy. J Microsc 201(Pt 3):368–376PubMedCrossRefGoogle Scholar
  53. 53.
    Tyzio R, Cossart R, Khalilov I et al (2006) Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science 314(5806): 1788–1792PubMedCrossRefGoogle Scholar
  54. 54.
    Nikolenko V, Poskanzer KE, Yuste R (2007) Two-photon photostimulation and imaging of neural circuits. Nat Methods 4(11): 943–950PubMedCrossRefGoogle Scholar
  55. 55.
    Golan L, Reutsky I, Farah N et al (2009) Design and characteristics of holographic neural photo-stimulation systems. J Neural Eng 6(6):066004PubMedCrossRefGoogle Scholar
  56. 56.
    Kantevari S, Matsuzaki M, Kanemoto Y et al (2010) Two-color, two-photon uncaging of glutamate and GABA. Nat Methods 7(2): 123–125PubMedCrossRefGoogle Scholar
  57. 57.
    Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268PubMedCrossRefGoogle Scholar
  58. 58.
    Rickgauer JP, Tank DW (2009) Two-photon excitation of channelrhodopsin-2 at saturation. Proc Natl Acad Sci U S A 106(35): 15025–15030PubMedCrossRefGoogle Scholar
  59. 59.
    Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2(3):e299PubMedCrossRefGoogle Scholar
  60. 60.
    Hirase H, Nikolenko V, Goldberg JH et al (2002) Multiphoton stimulation of neurons. J Neurobiol 51(3):237–247PubMedCrossRefGoogle Scholar
  61. 61.
    Matsuzaki M, Ellis-Davies GC, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4(11):1086–1092PubMedCrossRefGoogle Scholar
  62. 62.
    Ellis-Davies GC, Matsuzaki M, Paukert M et al (2007) 4-Carboxymethoxy-5,7-dinitroindolinyl-Glu: an improved caged glutamate for expeditious ultraviolet and two-photon photolysis in brain slices. J Neurosci 27(25):6601–6604PubMedCrossRefGoogle Scholar
  63. 63.
    Campagnola L, Wang H, Zylka MJ (2008) Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing channelrhodopsin-2. J Neurosci Methods 169(1):27–33PubMedCrossRefGoogle Scholar
  64. 64.
    Grossman N, Poher V, Grubb MS, Kennedy GT, Nikolic K, McGovern B et al (2010) Multi-site optical excitation using ChR2 and micro-LED array. J Neural Eng 7(1):16004PubMedCrossRefGoogle Scholar
  65. 65.
    Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375(6533):682–684PubMedCrossRefGoogle Scholar
  66. 66.
    Mainen ZF, Malinow R, Svoboda K (1999) Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399(6732):151–155PubMedCrossRefGoogle Scholar
  67. 67.
    Sabatini BL, Svoboda K (2000) Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408(6812): 589–593PubMedCrossRefGoogle Scholar
  68. 68.
    Tan YP, Llano I (1999) Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons. J Physiol 520:165–178CrossRefGoogle Scholar
  69. 69.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782PubMedCrossRefGoogle Scholar
  70. 70.
    Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63(4):429–437PubMedCrossRefGoogle Scholar
  71. 71.
    Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645PubMedCrossRefGoogle Scholar
  72. 72.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795PubMedCrossRefGoogle Scholar
  73. 73.
    Manley S, Gillette JM, Patterson GH et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5(2): 155–157PubMedCrossRefGoogle Scholar
  74. 74.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12): 932–940PubMedCrossRefGoogle Scholar
  75. 75.
    Zhu G, van Howe J, Durst M et al (2005) Simultaneous spatial and temporal focusing of femtosecond pulses. Opt Express 13(6): 2153–2159PubMedCrossRefGoogle Scholar
  76. 76.
    Durst ME, Zhu G, Xu C (2006) Simultaneous spatial and temporal focusing for axial scanning. Opt Express 14(25):12243PubMedCrossRefGoogle Scholar
  77. 77.
    Dombeck DA, Harvey CD, Tian L et al (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci. doi: 10.1038/nn.2648
  78. 78.
    Jung JC, Mehta AD, Aksay E et al (2004) In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J Neurophysiol 92(5):3121–3133PubMedCrossRefGoogle Scholar
  79. 79.
    Levene MJ, Dombeck DA, Kasischke KA et al (2004) In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 91(4): 1908–1912PubMedCrossRefGoogle Scholar
  80. 80.
    Bao H, Gu M (2009) Reduction of self-phase modulation in double-clad photonic crystal fiber for nonlinear optical endoscopy. Opt Lett 34(2):148–150PubMedCrossRefGoogle Scholar
  81. 81.
    Barretto RPJ, Messerschmidt B, Schnitzer MJ (2009) In vivo fluorescence imaging with high resolution microlenses. Nat Methods 6(7):511–512PubMedCrossRefGoogle Scholar
  82. 82.
    Flusberg BA, Cocker ED, Piyawattanametha W et al (2005) Fiber-optic fluorescence imaging. Nat Methods 2(12):941–950PubMedCrossRefGoogle Scholar
  83. 83.
    Murayama M, Pérez-Garci E, Lüscher H et al (2007) Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. J Neurophysiol 98(3):1791–1805PubMedCrossRefGoogle Scholar
  84. 84.
    Dombeck DA, Graziano MS, Tank DW (2009) Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice. J Neurosci 29(44):13751–13760PubMedCrossRefGoogle Scholar
  85. 85.
    Vijayan S, Hale GJ, Moore CI, Brown EN, Wilson MA (2010) Activity in the barrel cortex during active behavior and sleep. J Neurophysiol 103(4):2074PubMedCrossRefGoogle Scholar
  86. 86.
    O’Connor DH, Peron SP, Huber D et al (2010) Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67(6):1048–1061PubMedCrossRefGoogle Scholar
  87. 87.
    Helmchen F, Fee MS, Tank DW et al (2001) A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving animals. Neuron 31(6): 903–912PubMedCrossRefGoogle Scholar
  88. 88.
    Göbel W, Nimmerjahn A, Helmchen F (2004) Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber. Opt Lett 29(11):1285–1287PubMedCrossRefGoogle Scholar
  89. 89.
    Flusberg BA, Nimmerjahn A, Cocker ED et al (2008) Fluorescence microscopy in freely moving mice. Nat Methods 5(11):3–6CrossRefGoogle Scholar
  90. 90.
    Harvey CD, Collman F, Dombeck DA et al (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461(7266):941–946PubMedCrossRefGoogle Scholar
  91. 91.
    Bannwarth M, Correa IR, Sztretye M et al (2009) Indo-1 derivatives for local calcium sensing. ACS Chem Biol 4(3):179–190PubMedCrossRefGoogle Scholar
  92. 92.
    Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19(11):2396–2404PubMedCrossRefGoogle Scholar
  93. 93.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450PubMedGoogle Scholar
  94. 94.
    Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264(14):8171–8178PubMedGoogle Scholar
  95. 95.
    Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297):209–213PubMedCrossRefGoogle Scholar
  96. 96.
    Brown J (1975) Rapid changes in intracellular free calcium concentration. Detection by metallochromic indicator dyes in squid giant axon. Biophys J 15(11):1155–1160PubMedCrossRefGoogle Scholar
  97. 97.
    Graubard K, Ross WN (1985) Regional distribution of calcium influx into bursting neurons detected with arsenazo III. Proc Natl Acad Sci U S A 82(16):5565–5569PubMedCrossRefGoogle Scholar
  98. 98.
    Helmchen F, Svoboda K, Denk W (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2(11):989–996PubMedCrossRefGoogle Scholar
  99. 99.
    Smetters D, Majewska A, Yuste R (1999) Detecting action potentials in neuronal populations with calcium imaging. Methods 18(2):215–221PubMedCrossRefGoogle Scholar
  100. 100.
    Waters J, Larkum M, Sakmann B et al (2003) Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J Neurosci 23(24): 8558–8567PubMedGoogle Scholar
  101. 101.
    Garaschuk O, Milos R, Konnerth A (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Protoc 1(1):380–386PubMedCrossRefGoogle Scholar
  102. 102.
    Helmchen F, Imoto K, Sakmann B (1996) Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys J 70(2):1069–1081PubMedCrossRefGoogle Scholar
  103. 103.
    Ohki K, Chung S, Ch’ng YH et al (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433(7026):597–603PubMedCrossRefGoogle Scholar
  104. 104.
    Ozden I, Sullivan MR, Lee HM et al (2009) Reliable coding emerges from coactivation of climbing fibers in microbands of cerebellar Purkinje neurons. J Neurosci 29(34): 10463–10473PubMedCrossRefGoogle Scholar
  105. 105.
    Nimmerjahn A, Kirchhoff F, Kerr JN et al (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1(1):31–37PubMedCrossRefGoogle Scholar
  106. 106.
    Kang J, Kang N, Yu Y et al (2010) Sulforhodamine 101 induces long-term potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons. Neuroscience 169(4):1601–1609PubMedCrossRefGoogle Scholar
  107. 107.
    Ozden I, Lee HM, Sullivan MR et al (2008) Identification and clustering of event patterns from in vivo multiphoton optical recordings of neuronal ensembles. J Neurophysiol 100(1): 495–503PubMedCrossRefGoogle Scholar
  108. 108.
    Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572PubMedCrossRefGoogle Scholar
  109. 109.
    Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887PubMedCrossRefGoogle Scholar
  110. 110.
    Miyawaki A, Griesbeck O, Heim R et al (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A 96(5):2135–2140PubMedCrossRefGoogle Scholar
  111. 111.
    Wallace DJ, Meyer S, Astori S et al (2008) Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat Methods 5(9):797–804PubMedCrossRefGoogle Scholar
  112. 112.
    Mank M, Santos AF, Direnberger S et al (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5(9):805–811PubMedCrossRefGoogle Scholar
  113. 113.
    Hendel T, Mank M, Schnell B et al (2008) Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 28(29):7399–7411PubMedCrossRefGoogle Scholar
  114. 114.
    Horikawa K, Yamada Y, Matsuda T et al (2010) Spontaneous network activity visualized by ultrasensitive Ca(2+) indicators, yellow Cameleon-Nano. Nat Methods 7(9): 729–732PubMedCrossRefGoogle Scholar
  115. 115.
    Hasan MT, Friedrich RW, Euler T et al (2004) Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol 2(6):e163PubMedCrossRefGoogle Scholar
  116. 116.
    Civillico EF, Contreras D (2006) Integration of evoked responses in supragranular cortex studied with optical recordings in vivo. J Neurophysiol 96(1):336–351PubMedCrossRefGoogle Scholar
  117. 117.
    Kogan A, Ross W, Zecevic D et al (1995) Optical recording from cerebellar Purkinje cells using intracellularly injected voltage-sensitive dyes. Brain Res 700(1–2):235–239PubMedCrossRefGoogle Scholar
  118. 118.
    Orbach HS, Cohen LB (1983) Optical monitoring of activity from many areas of the in vitro and in vivo salamander olfactory bulb: a new method for studying functional organization in the vertebrate central nervous system. J Neurosci 3(11):2251–2262PubMedGoogle Scholar
  119. 119.
    McQuiston AR, Saggau P (2003) Mu-opioid receptors facilitate the propagation of excitatory activity in rat hippocampal area CA1 by disinhibition of all anatomical layers. J Neurophysiol 90(3):1936–1948PubMedCrossRefGoogle Scholar
  120. 120.
    Kuhn B, Denk W, Bruno RM (2008) In vivo two-photon voltage-sensitive dye imaging reveals top-down control of cortical layers 1 and 2 during wakefulness. Proc Natl Acad Sci U S A 105(21):7588–7593PubMedCrossRefGoogle Scholar
  121. 121.
    Antić S, Zecević D (1995) Optical signals from neurons with internally applied voltage-sensitive dyes. J Neurosci 15(2):1392–1405PubMedGoogle Scholar
  122. 122.
    Nuriya M, Jiang J, Nemet B et al (2006) Imaging membrane potential in dendritic spines. Proc Natl Acad Sci U S A 103(3): 786–790PubMedCrossRefGoogle Scholar
  123. 123.
    Dombeck DA, Sacconi L, Blanchard-Desce M et al (2005) Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy. J Neurophysiol 94(5): 3628–3636PubMedCrossRefGoogle Scholar
  124. 124.
    Stuart GJ, Palmer LM (2006) Imaging membrane potential in dendrites and axons of single neurons. Pflügers Archiv: Eur j physiol 453(3):403–410CrossRefGoogle Scholar
  125. 125.
    Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19(4):735–741PubMedCrossRefGoogle Scholar
  126. 126.
    Guerrero G, Siegel MS, Roska B et al (2002) Tuning FlaSh: redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential. Biophys J 83(6):3607–3618PubMedCrossRefGoogle Scholar
  127. 127.
    Ataka K, Pieribone VA (2002) A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J 82(1 Pt 1): 509–516PubMedCrossRefGoogle Scholar
  128. 128.
    Chanda B, Blunck R, Faria LC et al (2005) A hybrid approach to measuring electrical activity in genetically specified neurons. Nat Neurosci 8(11):1619–1626PubMedCrossRefGoogle Scholar
  129. 129.
    Sjulson L, Miesenböck G (2008) Rational optimization and imaging in vivo of a genetically encoded optical voltage reporter. J Neurosci 28(21):5582–5593PubMedCrossRefGoogle Scholar
  130. 130.
    Perret D, Marchese S, Gentili A et al (2008) LC–MS–MS determination of stabilizers and explosives residues in hand-swabs. Chromatographia 68(7–8):517–524CrossRefGoogle Scholar
  131. 131.
    Gautam SG, Perron A, Mutoh H et al (2009) Exploration of fluorescent protein voltage probes based on circularly permuted fluorescent proteins. Front Neuroengin. doi: 10.3389/neuro.16.014.2009
  132. 132.
    Perron A, Mutoh H, Launey T et al (2009) Red-shifted voltage-sensitive fluorescent proteins. Chem Biol 16(12):1268–1277PubMedCrossRefGoogle Scholar
  133. 133.
    Lundby A, Akemann W, Knöpfel T (2010) Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP. Eur Biophys J. doi: 10.1007/s00249-010-0620-0

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Tycho M. Hoogland
    • 1
  • Peter Saggau
    • 2
  1. 1.Netherlands Institute for NeuroscienceAmsterdamThe Netherlands
  2. 2.Department of NeuroscienceBaylor College of MedicineHoustonUSA

Personalised recommendations