Morphological Approaches to the Anatomical Dissection of Neuronal Circuits

  • David C. Lyon
Part of the Neuromethods book series (NM, volume 67)


The purpose of this introductory chapter is to provide an overview of a number of techniques used to study the brain’s anatomical organization, with particular focus on the investigation of the mammalian neocortex, the large outer surface of the brain and the key structure responsible for complex perceptual and cognitive abilities of mammals. I briefly examine how traditional and more recently developed methods involving histochemistry, neuronal tracing, cell morphology and photostimulation are being used to reveal cortical anatomy at broad and very fine levels of specificity. In addition, in the last section, I review recent advances in neuronal tracing technology that capitalize on the neurotropic properties of rabies virus to enable retrograde labeling of neural circuits at single cell resolution. In the chapters that follow, detailed descriptions of new methodologies for characterizing neuronal cell populations (Herculano-Houzel), as well as high-resolution techniques for mapping local cortical networks (Radkinow et al) are discussed. These approaches are proving to be invaluable in unraveling the many neuroanatomical issues that remain unresolved.

Key words

Architecture Cell morphology Cell type specificity Immunohistochemistry Neuronal tracers Fluorescent labeling Glycoprotein Photostimulation Rabies virus Retrograde transport 


  1. 1.
    Parker D (2010) Neuronal network analyses: premises, promises and uncertainties. Philos Trans R Soc Lond B Biol Sci 365:2315–2328PubMedCrossRefGoogle Scholar
  2. 2.
    Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Barth, LeipzigGoogle Scholar
  3. 3.
    Jones EG (2007) Neuroanatomy: Cajal and after Cajal. Brain Res Rev 55:248–255PubMedCrossRefGoogle Scholar
  4. 4.
    Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRefGoogle Scholar
  5. 5.
    Kaas JH (1987) The organization of neocortex in mammals: implications for theories of brain function. Annu Rev Psychol 38:129–151PubMedCrossRefGoogle Scholar
  6. 6.
    Krubitzer L (1995) The organization of neocortex in mammals: are species differences really so different? Trends Neurosci 18:408–417PubMedCrossRefGoogle Scholar
  7. 7.
    Lyon DC (2007) The evolution of visual cortex and visual systems. In: Krubitzer LA, Kaas JH (eds) Evolution of nervous systems. Academic, OxfordGoogle Scholar
  8. 8.
    Callaway EM (2002) Cell type specificity of local cortical connections. J Neurocytol 31:231–237PubMedCrossRefGoogle Scholar
  9. 9.
    Hassler R (1967) Comparative anatomy in the central visual systems in day- and night-active primates. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, StuttgartGoogle Scholar
  10. 10.
    Yamamori T, Rockland KS (2006) Neocortical areas, layers, connections, and gene expression. Neurosci Res 55:11–27PubMedCrossRefGoogle Scholar
  11. 11.
    Catania KC, Henry EC (2006) Touching on somatosensory specializations in mammals. Curr Opin Neurobiol 16:467–473PubMedCrossRefGoogle Scholar
  12. 12.
    Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749PubMedCrossRefGoogle Scholar
  13. 13.
    Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nat Rev Neurosci 10:360–372PubMedCrossRefGoogle Scholar
  14. 14.
    Rockland KS (1997) Elements of cortical architecture: hierarchy revisited. In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex. Plenum Publishing Co., New YorkGoogle Scholar
  15. 15.
    Sincich LC, Horton JC (2005) The circuitry of V1 and V2: integration of color, form, and motion. Annu Rev Neurosci 28:303–326PubMedCrossRefGoogle Scholar
  16. 16.
    Wong P, Kaas JH (2010) Architectonic subdivisions of neocortex in the Galago (Otolemur garnetti). Anat Rec (Hoboken) 293:1033–1069CrossRefGoogle Scholar
  17. 17.
    Yoshimura Y, Dantzker JL, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433:868–873PubMedCrossRefGoogle Scholar
  18. 18.
    Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18:617–623PubMedCrossRefGoogle Scholar
  19. 19.
    Marshel JH, Mori T, Nielsen KJ et al (2010) Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 67:562–574PubMedCrossRefGoogle Scholar
  20. 20.
    Wickersham IR, Lyon DC, Barnard RJ et al (2007) Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53:639–647PubMedCrossRefGoogle Scholar
  21. 21.
    Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209PubMedGoogle Scholar
  22. 22.
    Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28PubMedCrossRefGoogle Scholar
  23. 23.
    Catania KC (2002) Barrels, stripes, and fingerprints in the brain – implications for theories of cortical organization. J Neurocytol 31:347–358PubMedCrossRefGoogle Scholar
  24. 24.
    Sincich LC, Adams DL, Horton JC (2003) Complete flatmounting of the macaque cerebral cortex. Vis Neurosci 20:663–686PubMedCrossRefGoogle Scholar
  25. 25.
    Lyon DC, Kaas JH (2001) Connectional and architectonic evidence for dorsal and ventral V3, and dorsomedial area in marmoset monkeys. J Neurosci 21:249–261PubMedGoogle Scholar
  26. 26.
    Rosa MG, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc Lond B Biol Sci 360:665–691PubMedCrossRefGoogle Scholar
  27. 27.
    Van Essen DC (2004) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT, CambridgeGoogle Scholar
  28. 28.
    Kaas JH, Lyon DC (2001) Visual cortex organization in primates: theories of V3 and adjoining visual areas. Prog Brain Res 134:285–295PubMedCrossRefGoogle Scholar
  29. 29.
    Wong P, Kaas JH (2009) Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri). Anat Rec (Hoboken) 292:994–1027CrossRefGoogle Scholar
  30. 30.
    Casagrande VA, Kaas JH (1994) The afferent, intrinsic, and efferent connections of primary visual cortex in primates. In: Peters A, Rockland KS (eds) Cerebral cortex. Plenum Publishing Co., New YorkGoogle Scholar
  31. 31.
    Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764PubMedCrossRefGoogle Scholar
  32. 32.
    Preuss TM, Coleman GQ (2002) Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12:671–691PubMedCrossRefGoogle Scholar
  33. 33.
    Mesulam MM (1982) Tracing neural connections with horseradish peroxidase. Wiley, New YorkGoogle Scholar
  34. 34.
    Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 290:219–238PubMedCrossRefGoogle Scholar
  35. 35.
    Novikova L, Novikov L, Kellerth JO (1997) Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates. J Neurosci Methods 74:9–15PubMedCrossRefGoogle Scholar
  36. 36.
    Schmued L, Kyriakidis K, Heimer L (1990) In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, Fluoro-Ruby, within the CNS. Brain Res 526:127–134PubMedCrossRefGoogle Scholar
  37. 37.
    Lyon DC, Jain N, Kaas JH (1998) Cortical connections of striate and extrastriate visual areas in tree shrews. J Comp Neurol 401:109–128PubMedCrossRefGoogle Scholar
  38. 38.
    Lyon DC, Kaas JH (2002) Evidence for a modified V3 with dorsal and ventral halves in macaque monkeys. Neuron 33:453–461PubMedCrossRefGoogle Scholar
  39. 39.
    Lyon DC, Kaas JH (2002) Evidence from V1 connections for both dorsal and ventral subdivisions of V3 in three species of New World monkeys. J Comp Neurol 449:281–297PubMedCrossRefGoogle Scholar
  40. 40.
    Angelucci A, Clasca F, Sur M (1996) Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. J Neurosci Methods 65:101–112PubMedCrossRefGoogle Scholar
  41. 41.
    Ericson H, Blomqvist A (1988) Tracing of neuronal connections with cholera toxin subunit B: light and electron microscopic immunohistochemistry using monoclonal antibodies. J Neurosci Methods 24:225–235PubMedCrossRefGoogle Scholar
  42. 42.
    Marino J, Schummers J, Lyon DC et al (2005) Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci 8:194–201PubMedCrossRefGoogle Scholar
  43. 43.
    Bosking WH, Zhang Y, Schofield B et al (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17:2112–2127PubMedGoogle Scholar
  44. 44.
    Rockland KS, Lund JS (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215:1532–1534PubMedCrossRefGoogle Scholar
  45. 45.
    Yabuta NH, Callaway EM (1998) Cytochrome-oxidase blobs and intrinsic horizontal connections of layer 2/3 pyramidal neurons in primate V1. Vis Neurosci 15:1007–1027PubMedCrossRefGoogle Scholar
  46. 46.
    Federer F, Ichida JM, Jeffs J et al (2009) Four projection streams from primate V1 to the cytochrome oxidase stripes of V2. J Neurosci 29:15455–15471PubMedCrossRefGoogle Scholar
  47. 47.
    Nassi JJ, Callaway EM (2007) Specialized circuits from primary visual cortex to V2 and area MT. Neuron 55:799–808PubMedCrossRefGoogle Scholar
  48. 48.
    Wickersham IR, Finke S, Conzelmann KK et al (2007) Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4:47–49PubMedCrossRefGoogle Scholar
  49. 49.
    Enquist LW, Card JP (2003) Recent advances in the use of neurotropic viruses for circuit analysis. Curr Opin Neurobiol 13:603–606PubMedCrossRefGoogle Scholar
  50. 50.
    Braz JM, Enquist LW, Basbaum AI (2009) Inputs to serotonergic neurons revealed by conditional viral transneuronal tracing. J Comp Neurol 514:145–160PubMedCrossRefGoogle Scholar
  51. 51.
    DeFalco J, Tomishima M, Liu H et al (2001) Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291:2608–2613PubMedCrossRefGoogle Scholar
  52. 52.
    Callaway EM, Katz LC (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci USA 90:7661–7665PubMedCrossRefGoogle Scholar
  53. 53.
    Katz LC, Dalva MB (1994) Scanning laser photostimulation: a new approach for analyzing brain circuits. J Neurosci Methods 54:205–218PubMedCrossRefGoogle Scholar
  54. 54.
    Shepherd GM, Svoboda K (2005) Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J Neurosci 25:5670–5679PubMedCrossRefGoogle Scholar
  55. 55.
    Xu X, Callaway EM (2009) Laminar specificity of functional input to distinct types of inhibitory cortical neurons. J Neurosci 29:70–85PubMedCrossRefGoogle Scholar
  56. 56.
    Callaway EM (2004) Close encounters: how cortical neurons find and connect to their correct synaptic partners depends on the cell type. Neuron 43:156–158PubMedCrossRefGoogle Scholar
  57. 57.
    da Costa NM, Martin KA (2009) Selective targeting of the dendrites of corticothalamic cells by thalamic afferents in area 17 of the cat. J Neurosci 29:13919–13928PubMedCrossRefGoogle Scholar
  58. 58.
    Stepanyants A, Tamas G, Chklovskii DB (2004) Class-specific features of neuronal wiring. Neuron 43:251–259PubMedCrossRefGoogle Scholar
  59. 59.
    Thomson AM, Morris OT (2002) Selectivity in the inter-laminar connections made by neocortical neurones. J Neurocytol 31:239–246PubMedCrossRefGoogle Scholar
  60. 60.
    Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103:63–71PubMedCrossRefGoogle Scholar
  61. 61.
    Ugolini G (1995) Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. J Comp Neurol 356:457–480PubMedCrossRefGoogle Scholar
  62. 62.
    Ugolini G (2008) Use of rabies virus as a transneuronal tracer of neuronal connections: implications for the understanding of rabies pathogenesis. Dev Biol (Basel) 131:493–506Google Scholar
  63. 63.
    Conzelmann KK, Cox JH, Schneider LG et al (1990) Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175:485–499PubMedCrossRefGoogle Scholar
  64. 64.
    Etessami R, Conzelmann KK, Fadai-Ghotbi B et al (2000) Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J Gen Virol 81:2147–2153PubMedGoogle Scholar
  65. 65.
    Gaudin Y, Ruigrok RW, Knossow M et al (1993) Low-pH conformational changes of rabies virus glycoprotein and their role in membrane fusion. J Virol 67:1365–1372PubMedGoogle Scholar
  66. 66.
    Lafon M (2005) Rabies virus receptors. J Neurovirol 11:82–87PubMedCrossRefGoogle Scholar
  67. 67.
    Coulon P, Rollin P, Aubert M et al (1982) Molecular basis of rabies virus virulence. I. Selection of avirulent mutants of the CVS strain with anti-G monoclonal antibodies. J Gen Virol 61(Pt l):97–100PubMedCrossRefGoogle Scholar
  68. 68.
    Nassi JJ, Lyon DC, Callaway EM (2006) The parvocellular LGN provides a robust disynaptic input to the visual motion area MT. Neuron 50:319–327PubMedCrossRefGoogle Scholar
  69. 69.
    Lyon DC, Nassi JJ, Callaway EM (2010) A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 65:270–279PubMedCrossRefGoogle Scholar
  70. 70.
    Larsen DD, Wickersham IR, Callaway EM (2007) Retrograde tracing with recombinant rabies virus reveals correlations between projection targets and dendritic architecture in layer 5 of mouse barrel cortex. Front Neural Circuits 1:5PubMedGoogle Scholar
  71. 71.
    Barnard RJ, Elleder D, Young JA (2006) Avian sarcoma and leukosis virus-receptor interactions: from classical genetics to novel insights into virus-cell membrane fusion. Virology 344:25–29PubMedCrossRefGoogle Scholar
  72. 72.
    Kitamura K, Judkewitz B, Kano M et al (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5:61–67PubMedCrossRefGoogle Scholar
  73. 73.
    Joshi S, Hawken MJ (2006) Loose-patch-juxtacellular recording in vivo – a method for functional characterization and labeling of neurons in macaque V1. J Neurosci Methods 156:37–49PubMedCrossRefGoogle Scholar
  74. 74.
    Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634–660PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David C. Lyon
    • 1
  1. 1.Department of Anatomy & Neurobiology, School of MedicineUniversity of CaliforniaIrvineUSA

Personalised recommendations