Advertisement

Combining Optical Stimulation with Extracellular Electrophysiology in Behaving Mice

  • Joshua H. Siegle
Protocol
Part of the Neuromethods book series (NM, volume 67)

Abstract

Optical manipulation allows researchers to alter the activity of genetically defined neural populations with millisecond-scale temporal accuracy. This facilitates the activation and inactivation of functionally distinct subnetworks at precise times relative to behavior, something that was not previously possible. This chapter describes the construction of an implant for simultaneous light delivery and extracellular electrophysiology in unanesthetized, unrestrained mice. The implant contains eight stereotrodes surrounding a central fiber optic cable, is compact and lightweight, and can be modified for other recording/stimulation configurations.

Key words

Optogenetics Channelrhodopsin Stereotrodes Chronic recording Behavior Mice 

Notes

Acknowledgments

I would like to thank members of the laboratories of Matthew Wilson, Christopher Moore, and Susumu Tonegawa for advice on in vivo electrophysiology and optogenetics. This work was supported by an NDSEG Fellowship.

References

  1. 1.
    Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284PubMedCrossRefGoogle Scholar
  2. 2.
    Han X, Qian X, Bernstein JG et al (2009) Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62:191–198PubMedCrossRefGoogle Scholar
  3. 3.
    Gradinaru V, Mogri M, Thompson KR et al (2009) Optical deconstruction of Parkinsonian neural circuitry. Science 324:354–359PubMedCrossRefGoogle Scholar
  4. 4.
    Adesnik H, Scanziani M (2010) Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464:1155–1160PubMedCrossRefGoogle Scholar
  5. 5.
    Thyagarajan S, van Wyk M, Lehmann K et al (2010) Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci 30:8745–8758PubMedCrossRefGoogle Scholar
  6. 6.
    Histed MH, Bonin V, Reid RC (2009) Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63:508–522PubMedCrossRefGoogle Scholar
  7. 7.
    Sohal VS, Zhang F, Yizhar O et al (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702PubMedCrossRefGoogle Scholar
  8. 8.
    Cardin JA, Carlén M, Meletis K et al (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667PubMedCrossRefGoogle Scholar
  9. 9.
    Cardin JA, Carlén M, Meletis K et al (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat Protoc 5:247–254PubMedCrossRefGoogle Scholar
  10. 10.
    Aravanis AM, Wang LP, Zhang F et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156PubMedCrossRefGoogle Scholar
  11. 11.
    Bernstein JG, Han X, Henninger MA et al (2008) Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons. Proc Soc Photo Opt Instrum Eng 6854:68540HPubMedGoogle Scholar
  12. 12.
    Huber D, Petreanu L, Ghitani N et al (2008) Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451:61–64PubMedCrossRefGoogle Scholar
  13. 13.
    Zorzos AN, Dietrich A et al (2009) Light-proof neural recording electrodes. Soc Neurosci (Abstract)Google Scholar
  14. 14.
    Adamantidis AR, Zhang F, Aravanis AM et al (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424PubMedCrossRefGoogle Scholar
  15. 15.
    Tsai HC, Zhang F, Adamantidis A et al (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080–1084PubMedCrossRefGoogle Scholar
  16. 16.
    Royer S, Zemelman BV, Barbic M et al (2010) Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur J Neurosci 31(12):2279–91PubMedCrossRefGoogle Scholar
  17. 17.
    Zorzos AN, Bernstein JG et al (2009) Integrated microstructure lightguides for ultradense optical neural control of 3-dimensional neural circuits. Soc Neurosci (Abstract)Google Scholar
  18. 18.
    Ritt JT, Siegle JH et al (2009) Optical manipulation of cortical subnetworks during active touch in awake mice using channelrhodopsin-2. Soc Neurosci (Abstract)Google Scholar
  19. 19.
    Kvitsiani D, Ranade S et al (2009) Optical tagging of genetically defined cell types for extracellular recording in behaving rodents. Soc Neurosci (Abstract)Google Scholar
  20. 20.
    Kloosterman F, Davidson TJ, Gomperts SN et al (2009) Micro-drive array for chronic in vivo recording: drive fabrication. J Vis Exp 26(pii):1094PubMedGoogle Scholar
  21. 21.
    Nguyen DP, Layton SP, Hale G et al (2009) Micro-drive array for chronic in vivo recording: tetrode assembly. J Vis Exp 26(pii):1098PubMedGoogle Scholar
  22. 22.
    Oliveira LMO, Dimitrov D (2008) Surgical techniques for chronic implantation of microwire arrays in rodents and primates. In: Nicolelis MAL (ed) Methods for neural ensemble recording, 2nd edn. CRC, Boca Raton, FLGoogle Scholar
  23. 23.
    Dzirasa K (2008) Chronic recordings in transgenic mice. In: Nicolelis MAL (ed) Methods for neural ensemble recording, 2nd edn. CRC, Boca Raton, FLGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Joshua H. Siegle
    • 1
  1. 1.Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations