Light-Activated Ion Pumps and Channels for Temporally Precise Optical Control of Activity in Genetically Targeted Neurons

  • Brian Y. Chow
  • Xue Han
  • Jacob G. Bernstein
  • Patrick E. Monahan
  • Edward S. Boyden
Part of the Neuromethods book series (NM, volume 67)


The ability to turn on and off specific cell types and neural pathways in the brain, in a temporally precise fashion, has begun to enable the ability to test the sufficiency and necessity of particular neural activity patterns, and particular neural circuits, in the generation of normal and abnormal neural computations and behaviors by the brain. Over the last 5 years, a number of naturally occurring light-activated ion pumps and light-activated ion channels have been shown, upon genetic expression in specific neuron classes, to enable the voltage (and internal ionic composition) of those neurons to be controlled by light in a temporally precise fashion, without the need for chemical cofactors. In this chapter, we review three major classes of such genetically encoded “optogenetic” microbial opsins—light-gated ion channels such as channelrhodopsins, light-driven chloride pumps such as halorhodopsins, and light-driven proton pumps such as archaerhodopsins—that are in widespread use for mediating optical activation and silencing of neurons in species from Caenorhabditis elegans to nonhuman primates. We discuss the properties of these molecules—including their membrane expression, conductances, photocycle properties, ion selectivity, and action spectra—as well as genetic strategies for delivering these genes to neurons in different species, and hardware for performing light delivery in a diversity of settings. In the future, these molecules not only will continue to enable cutting-edge science but may also support a new generation of optical prosthetics for treating brain disorders.

Key words

Channelrhodopsin Optogenetics Photosensitive proteins Retinal Halorhodopsin Archaerhodopsin Light-sensitive cation channel Light-sensitive chloride pump Light-sensitive proton pump Photocontrol of behavior 


  1. 1.
    Nagel G et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945PubMedCrossRefGoogle Scholar
  2. 2.
    Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54:85–94PubMedCrossRefGoogle Scholar
  3. 3.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268PubMedCrossRefGoogle Scholar
  4. 4.
    Li X et al (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci USA 102:17816–17821PubMedCrossRefGoogle Scholar
  5. 5.
    Nagel G et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284PubMedCrossRefGoogle Scholar
  6. 6.
    Wang H et al (2009) Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas. J Biol Chem 284:5685–5696PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang F et al (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11:631–633PubMedCrossRefGoogle Scholar
  8. 8.
    Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234PubMedCrossRefGoogle Scholar
  9. 9.
    Lewis TL Jr, Mao T, Svoboda K, Arnold DB (2009) Myosin-dependent targeting of transmembrane proteins to neuronal dendrites. Nat Neurosci 12:568–576PubMedCrossRefGoogle Scholar
  10. 10.
    Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814PubMedCrossRefGoogle Scholar
  11. 11.
    Lanyi JK, Duschl A, Hatfield GW, May K, Oesterhelt D (1990) The primary structure of a halorhodopsin from Natronobacterium pharaonis. Structural, functional and evolutionary implications for bacterial rhodopsins and halorhodopsins. J Biol Chem 265:1253–1260PubMedGoogle Scholar
  12. 12.
    Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2:e299PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang F et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639PubMedCrossRefGoogle Scholar
  14. 14.
    Bamberg E, Tittor J, Oesterhelt D (1993) Light-driven proton or chloride pumping by halorhodopsin. Proc Natl Acad Sci USA 90:639–643PubMedCrossRefGoogle Scholar
  15. 15.
    Chow B et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277):98–102PubMedCrossRefGoogle Scholar
  16. 16.
    Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139PubMedCrossRefGoogle Scholar
  17. 17.
    Zhao S et al (2008) Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol 36:141–154PubMedCrossRefGoogle Scholar
  18. 18.
    Chow B, Han X, Qian X, Boyden ES (2009) High-performance halorhodopsin variants for improved genetically-targetable optical neural silencing. Frontiers in Systems Neuroscience. Conference Abstract: Computational and systems neuroscience. doi: 10.3389/conf.neuro.10.2009.03.347
  19. 19.
    Han X, Qian X, Stern P, Chuong AS, Boyden ES (2009) Informational lesions: optical perturbation of spike timing and neural synchrony via microbial opsin gene fusions. Front Mol Neurosci. doi: 10.3389/neuro.02.012.2009
  20. 20.
    Henderson R, Schertler GF (1990) The structure of bacteriorhodopsin and its relevance to the visual opsins and other seven-helix G-protein coupled receptors. Philos Trans R Soc Lond B Biol Sci 326:379–389PubMedCrossRefGoogle Scholar
  21. 21.
    Palczewski K (2006) G protein-coupled receptorrhodopsin. Annu Rev Biochem 75:743–767. doi: 10.1146/annurev.biochem.75.103004.142743 PubMedCrossRefGoogle Scholar
  22. 22.
    Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688. doi: 10.1146/annurev.physiol.66.032102.150049 PubMedCrossRefGoogle Scholar
  23. 23.
    Lanyi JK (1986) Halorhodopsin: a light-driven chloride ion pump. Annu Rev Biophys Biophys Chem 15:11–28. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  24. 24.
    Essen LO (2002) Halorhodopsin: light-driven ion pumping made simple? Curr Opin Struct Biol 12:516–522PubMedCrossRefGoogle Scholar
  25. 25.
    Zemelman BV, Lee GA, Ng M, Miesenbock G (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33:15–22PubMedCrossRefGoogle Scholar
  26. 26.
    Lin B, Koizumi A, Tanaka N, Panda S, Masland RH (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA 105:16009–16014PubMedCrossRefGoogle Scholar
  27. 27.
    Kolbe M, Besir H, Essen LO, Oesterhelt D (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science 288:1390–1396PubMedCrossRefGoogle Scholar
  28. 28.
    Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol 291:899–911PubMedCrossRefGoogle Scholar
  29. 29.
    Braiman MS, Stern LJ, Chao BH, Khorana HG (1987) Structure-function studies on bacteriorhodopsin. IV. Purification and renaturation of bacterio-opsin polypeptide expressed in Escherichia coli. J Biol Chem 262:9271–9276PubMedGoogle Scholar
  30. 30.
    Gilles-Gonzalez MA, Engelman DM, Khorana HG (1991) Structure-function studies of bacteriorhodopsin XV. Effects of deletions in loops B-C and E-F on bacteriorhodopsin chromophore and structure. J Biol Chem 266:8545–8550PubMedGoogle Scholar
  31. 31.
    Mogi T, Stern LJ, Chao BH, Khorana HG (1989) Structure-function studies on bacteriorhodopsin. VIII. Substitutions of the membrane-embedded prolines 50, 91, and 186: the effects are determined by the substituting amino acids. J Biol Chem 264:14192–14196PubMedGoogle Scholar
  32. 32.
    Mogi T, Marti T, Khorana HG (1989) Structure-function studies on bacteriorhodopsin. IX. Substitutions of tryptophan residues affect protein-retinal interactions in bacteriorhodopsin. J Biol Chem 264:14197–14201PubMedGoogle Scholar
  33. 33.
    Mogi T, Stern LJ, Hackett NR, Khorana HG (1987) Bacteriorhodopsin mutants containing single tyrosine to phenylalanine substitutions are all active in proton translocation. Proc Natl Acad Sci USA 84:5595–5599PubMedCrossRefGoogle Scholar
  34. 34.
    Marti T et al (1991) Bacteriorhodopsin mutants containing single substitutions of serine or threonine residues are all active in proton translocation. J Biol Chem 266:6919–6927PubMedGoogle Scholar
  35. 35.
    Marinetti T, Subramaniam S, Mogi T, Marti T, Khorana HG (1989) Replacement of aspartic residues 85, 96, 115, or 212 affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin. Proc Natl Acad Sci USA 86:529–533PubMedCrossRefGoogle Scholar
  36. 36.
    Mogi T, Stern LJ, Marti T, Chao BH, Khorana HG (1988) Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc Natl Acad Sci USA 85:4148–4152PubMedCrossRefGoogle Scholar
  37. 37.
    Subramaniam S, Greenhalgh DA, Khorana HG (1992) Aspartic acid 85 in bacteriorhodopsin functions both as proton acceptor and negative counterion to the Schiff base. J Biol Chem 267:25730–25733PubMedGoogle Scholar
  38. 38.
    Brown LS, Needleman R, Lanyi JK (1996) Interaction of proton and chloride transfer pathways in recombinant bacteriorhodopsin with chloride transport activity: implications for the chloride translocation mechanism. Biochemistry 35:16048–16054PubMedCrossRefGoogle Scholar
  39. 39.
    Hegemann P, Oesterhelt D, Steiner M (1985) The photocycle of the chloride pump halorhodopsin. I: Azide-catalyzed deprotonation of the chromophore is a side reaction of photocycle intermediates inactivating the pump. EMBO J 4:2347–2350PubMedGoogle Scholar
  40. 40.
    Blanck A, Oesterhelt D (1987) The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EMBO J 6:265–273PubMedGoogle Scholar
  41. 41.
    Rudiger M, Oesterhelt D (1997) Specific arginine and threonine residues control anion binding and transport in the light-driven chloride pump halorhodopsin. EMBO J 16:3813–3821PubMedCrossRefGoogle Scholar
  42. 42.
    Varo G et al (1995) Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 1. The photochemical cycle. Biochemistry 34:14490–14499PubMedCrossRefGoogle Scholar
  43. 43.
    Tittor J et al (1997) Chloride and proton transport in bacteriorhodopsin mutant D85T: different modes of ion translocation in a retinal protein. J Mol Biol 271:405–416PubMedCrossRefGoogle Scholar
  44. 44.
    Tittor J, Oesterhelt D, Bamberg E (1995) Bacteriorhodopsin mutants D85N, D85T and D85,96N as proton pumps. Biophys Chem 56:153–157PubMedCrossRefGoogle Scholar
  45. 45.
    Varo G, Needleman R, Lanyi JK (1995) Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 2. Chloride release and uptake, protein conformation change, and thermodynamics. Biochemistry 34:14500–14507PubMedCrossRefGoogle Scholar
  46. 46.
    Berthold P et al (2008) Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization. Plant Cell 20:1665–1677. doi: 10.1105/tpc.108.057919 PubMedCrossRefGoogle Scholar
  47. 47.
    Sineshchekov OA, Govorunova EG, Spudich JL (2009) Photosensory functions of channelrhodopsins in native algal cells. Photochem Photobiol 85:556–563PubMedCrossRefGoogle Scholar
  48. 48.
    Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99:8689–8694PubMedGoogle Scholar
  49. 49.
    Feldbauer K et al (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci USA 106:12317–12322PubMedCrossRefGoogle Scholar
  50. 50.
    Nagel G et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398PubMedCrossRefGoogle Scholar
  51. 51.
    Ernst OP et al (2008) Photoactivation of channelrhodopsin. J Biol Chem 283:1637–1643PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang F, Wang LP, Boyden ES, Deisseroth K (2006) Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 3:785–792PubMedCrossRefGoogle Scholar
  53. 53.
    Huber D et al (2008) Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451:61–64PubMedCrossRefGoogle Scholar
  54. 54.
    Bamann C, Kirsch T, Nagel G, Bamberg E (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375:686–694PubMedCrossRefGoogle Scholar
  55. 55.
    Nikolic K, Degenaar P, Toumazou C (2006) Modeling and engineering aspects of channelrhodopsin2 system for neural photostimulation. Conf Proc IEEE Eng Med Biol Soc 1:1626–1629PubMedCrossRefGoogle Scholar
  56. 56.
    Tsunoda SP, Hegemann P (2009) Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation. Photochem Photobiol 85:564–569PubMedCrossRefGoogle Scholar
  57. 57.
    Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ (2008) Monitoring light-induced structural changes of channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy. J Biol Chem 283:35033–35041. doi: 10.1074/jbc.M806353200 PubMedCrossRefGoogle Scholar
  58. 58.
    Gunaydin LA et al (2010) Ultrafast optogenetic control. Nat Neurosci 13(3):387–92PubMedCrossRefGoogle Scholar
  59. 59.
    Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684PubMedCrossRefGoogle Scholar
  60. 60.
    Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377PubMedCrossRefGoogle Scholar
  61. 61.
    Mohanty SK et al (2008) In-depth activation of channelrhodopsin 2-sensitized excitable cells with high spatial resolution using two-photon excitation with a near-infrared laser microbeam. Biophys J 95:3916–3926PubMedCrossRefGoogle Scholar
  62. 62.
    Rickgauer JP, Tank DW (2009) Two-photon excitation of channelrhodopsin-2 at saturation. Proc Natl Acad Sci USA 106:15025–15030PubMedCrossRefGoogle Scholar
  63. 63.
    Sineshchekov OA et al (2005) Rhodopsin-mediated photoreception in cryptophyte flagellates. Biophys J 89:4310–4319PubMedCrossRefGoogle Scholar
  64. 64.
    Sineshchekov OA, Litvin FF, Keszthelyi L (1990) Two components of photoreceptor potential in phototaxis of the flagellated green alga Haematococcus pluvialis. Biophys J 57:33–39PubMedCrossRefGoogle Scholar
  65. 65.
    Litvin FF, Sineshchekov OA, Sineshchekov VA (1978) Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis. Nature 271:476–478PubMedCrossRefGoogle Scholar
  66. 66.
    Gradinaru V et al (2007) Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 27:14231–14238PubMedCrossRefGoogle Scholar
  67. 67.
    Ihara K et al (1999) Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J Mol Biol 285:163–174PubMedCrossRefGoogle Scholar
  68. 68.
    Mukohata Y, Ihara K, Tamura T, Sugiyama Y (1999) Halobacterial rhodopsins. J Biochem 125:649–657PubMedCrossRefGoogle Scholar
  69. 69.
    Klare JP, Chizhov I, Engelhard M (2008) Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. Results Probl Cell Differ 45:73–122PubMedCrossRefGoogle Scholar
  70. 70.
    Antón J et al (2005) Salinibacter ruber: genomics and biogeography. In: Gunde-Cimerman N, Plemenitas A, Oren A (eds) Adaptation to life in high salt concentrations in archaea, bacteria and eukarya. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 257–266Google Scholar
  71. 71.
    Balashov SP et al (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064PubMedCrossRefGoogle Scholar
  72. 72.
    Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411:786–789PubMedCrossRefGoogle Scholar
  73. 73.
    Beja O et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906PubMedCrossRefGoogle Scholar
  74. 74.
    Friedrich T et al (2002) Proteorhodopsin is a light-driven proton pump with variable vectoriality. J Mol Biol 321:821–838PubMedCrossRefGoogle Scholar
  75. 75.
    Kelemen BR, Du M, Jensen RB (2003) Proteorhodopsin in living color: diversity of spectral properties within living bacterial cells. Biochim Biophys Acta 1618:25–32PubMedCrossRefGoogle Scholar
  76. 76.
    Kim SY, Waschuk SA, Brown LS, Jung KH (2008) Screening and characterization of proteorhodopsin color-tuning mutations in Escherichia coli with endogenous retinal synthesis. Biochim Biophys Acta 1777:504–513PubMedCrossRefGoogle Scholar
  77. 77.
    Brown LS (2004) Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem Photobiol Sci 3:555–565PubMedCrossRefGoogle Scholar
  78. 78.
    Waschuk SA, Bezerra AG, Shi L, Brown LS (2005) Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci USA 102:6879–6883. doi: 10.1073/pnas.0409659102 PubMedCrossRefGoogle Scholar
  79. 79.
    Tsunoda SP et al (2006) H+-pumping rhodopsin from the marine alga Acetabularia. Biophys J 91:1471–1479PubMedCrossRefGoogle Scholar
  80. 80.
    Yoshimura K, Kouyama T (2008) Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2. J Mol Biol 375:1267–1281PubMedCrossRefGoogle Scholar
  81. 81.
    Enami N et al (2006) Crystal structures of archaerhodopsin-1 and -2: common structural motif in archaeal light-driven proton pumps. J Mol Biol 358:675–685PubMedCrossRefGoogle Scholar
  82. 82.
    Seki A et al (2007) Heterologous expression of Pharaonis halorhodopsin in Xenopus laevis oocytes and electrophysiological characterization of its light-driven Cl pump activity. Biophys J 92:2559–2569PubMedCrossRefGoogle Scholar
  83. 83.
    Okuno D, Asaumi M, Muneyuki E (1999) Chloride concentration dependency of the electrogenic activity of halorhodopsin. Biochemistry 38:5422–5429PubMedCrossRefGoogle Scholar
  84. 84.
    Muneyuki E, Shibazaki C, Wada Y, Yakushizin M, Ohtani H (2002) Cl(−) concentration dependence of photovoltage generation by halorhodopsin from Halobacterium salinarum. Biophys J 83:1749–1759PubMedCrossRefGoogle Scholar
  85. 85.
    Gradinaru V et al (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141(1):154–65PubMedCrossRefGoogle Scholar
  86. 86.
    Baliga NS et al (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead sea. Genome Res 14:2221–2234PubMedCrossRefGoogle Scholar
  87. 87.
    Tonnesen J, Sorensen AT, Deisseroth K, Lundberg C, Kokaia M (2009) Optogenetic control of epileptiform activity. Proc Natl Acad Sci USA 106:12162–12167PubMedCrossRefGoogle Scholar
  88. 88.
    Bernstein JG et al (2008) Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons. Proc Soc Photo Opt Instrum Eng 6854:68540HPubMedGoogle Scholar
  89. 89.
    Ludmann K, Ibron G, Lanyi JK, Varo G (2000) Charge motions during the photocycle of pharaonis halorhodopsin. Biophys J 78:959–966PubMedCrossRefGoogle Scholar
  90. 90.
    Chizhov I, Engelhard M (2001) Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. Biophys J 81:1600–1612PubMedCrossRefGoogle Scholar
  91. 91.
    Ming M et al (2006) pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: comparison with bacteriorhodopsin. Biophys J 90:3322–3332PubMedCrossRefGoogle Scholar
  92. 92.
    Lukashev EP et al (1994) pH dependence of the absorption spectra and photochemical transformations of the archaerhodopsins. Photochem Photobiol 60:69–75PubMedCrossRefGoogle Scholar
  93. 93.
    Lanyi JK (2006) Proton transfers in the bacteriorhodopsin photocycle. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1757:1012–1018CrossRefGoogle Scholar
  94. 94.
    Bevensee MO, Cummins TR, Haddad GG, Boron WF, Boyarsky G (1996) pH regulation in single CA1 neurons acutely isolated from the hippocampi of immature and mature rats. J Physiol 494(Pt 2):315–328PubMedGoogle Scholar
  95. 95.
    Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83:1183–1221PubMedGoogle Scholar
  96. 96.
    Meyer TM, Munsch T, Pape HC (2000) Activity-related changes in intracellular pH in rat thalamic relay neurons. Neuroreport 11:33–37PubMedCrossRefGoogle Scholar
  97. 97.
    Trapp S, Luckermann M, Brooks PA, Ballanyi K (1996) Acidosis of rat dorsal vagal neurons in situ during spontaneous and evoked activity. J Physiol 496(Pt 3):695–710PubMedGoogle Scholar
  98. 98.
    Brown LS et al (1995) Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin. J Biol Chem 270:27122–27126PubMedCrossRefGoogle Scholar
  99. 99.
    Phatak P, Ghosh N, Yu H, Cui Q, Elstner M (2008) Amino acids with an intermolecular proton bond as proton storage site in bacteriorhodopsin. Proc Natl Acad Sci USA 105:19672–19677PubMedCrossRefGoogle Scholar
  100. 100.
    Henderson R et al (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929PubMedCrossRefGoogle Scholar
  101. 101.
    Man-Aharonovich D et al (2004) Characterization of RS29, a blue-green proteorhodopsin variant from the Red Sea. Photochem Photobiol Sci 3:459–462PubMedCrossRefGoogle Scholar
  102. 102.
    Sasaki J et al (1995) Conversion of bacteriorhodopsin into a chloride ion pump. Science 269:73–75PubMedCrossRefGoogle Scholar
  103. 103.
    Iwamoto M et al (2004) Proton release and uptake of pharaonis phoborhodopsin (sensory rhodopsin II) reconstituted into phospholipids. Biochemistry 43:3195–3203PubMedCrossRefGoogle Scholar
  104. 104.
    Sudo Y, Iwamoto M, Shimono K, Sumi M, Kamo N (2001) Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is ceased by association with the transducer. Biophys J 80:916–922PubMedCrossRefGoogle Scholar
  105. 105.
    Boichenko VA, Wang JM, Antón J, Lanyi JK, Balashov SP (2006) Functions of carotenoids in xanthorhodopsin and archaerhodopsin, from action spectra of photoinhibition of cell respiration. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1757:1649–1656CrossRefGoogle Scholar
  106. 106.
    Serrano EE, Zeiger E, Hagiwara S (1988) Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts. Proc Natl Acad Sci USA 85:436–440PubMedCrossRefGoogle Scholar
  107. 107.
    Moreau CJ, Dupuis JP, Revilloud J, Arumugam K, Vivaudou M (2008) Coupling ion channels to receptors for biomolecule sensing. Nat Nanotechnol 3:620–625PubMedCrossRefGoogle Scholar
  108. 108.
    Wang H et al (2007) High-speed mapping of synaptic connectivity using photostimulation in channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci USA 104:8143–8148PubMedCrossRefGoogle Scholar
  109. 109.
    Han X et al (2009) Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62:191–198PubMedCrossRefGoogle Scholar
  110. 110.
    Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28:7025–7030PubMedCrossRefGoogle Scholar
  111. 111.
    Kuhlman SJ, Huang ZJ (2008) High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PLoS One 3:e2005PubMedCrossRefGoogle Scholar
  112. 112.
    Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663–668PubMedCrossRefGoogle Scholar
  113. 113.
    Schroll C et al (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr Biol 16:1741–1747PubMedCrossRefGoogle Scholar
  114. 114.
    Douglass AD, Kraves S, Deisseroth K, Schier AF, Engert F (2008) Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol 18:1133–1137PubMedCrossRefGoogle Scholar
  115. 115.
    Yan W et al (2001) Cloning and characterization of a human beta, beta-carotene-15,15′-dioxygenase that is highly expressed in the retinal pigment epithelium. Genomics 72:193–202PubMedCrossRefGoogle Scholar
  116. 116.
    Dittgen T et al (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci USA 101:18206–18211PubMedCrossRefGoogle Scholar
  117. 117.
    Chhatwal JP, Hammack SE, Jasnow AM, Rainnie DG, Ressler KJ (2007) Identification of cell-type-specific promoters within the brain using lentiviral vectors. Gene Ther 14:575–583PubMedCrossRefGoogle Scholar
  118. 118.
    Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424PubMedCrossRefGoogle Scholar
  119. 119.
    Tan W et al (2008) Silencing preBotzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat. Nat Neurosci 11:538–540PubMedCrossRefGoogle Scholar
  120. 120.
    Nathanson JL, Yanagawa Y, Obata K, Callaway EM (2009) Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161:441–450PubMedCrossRefGoogle Scholar
  121. 121.
    Wickersham IR, Finke S, Conzelmann KK, Callaway EM (2007) Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4:47–49PubMedCrossRefGoogle Scholar
  122. 122.
    Stachler MD, Chen I, Ting AY, Bartlett JS (2008) Site-specific modification of AAV vector particles with biophysical probes and targeting ligands using biotin ligase. Mol Ther 16:1467–1473PubMedCrossRefGoogle Scholar
  123. 123.
    Toni N et al (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11:901–907PubMedCrossRefGoogle Scholar
  124. 124.
    Wickersham IR et al (2007) Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53:639–647PubMedCrossRefGoogle Scholar
  125. 125.
    Banfield BW, Kaufman JD, Randall JA, Pickard GE (2003) Development of pseudorabies virus strains expressing red fluorescent proteins: new tools for multisynaptic labeling applications. J Virol 77:10106–10112PubMedCrossRefGoogle Scholar
  126. 126.
    Foust KD et al (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27:59–65PubMedCrossRefGoogle Scholar
  127. 127.
    Chan SC, Bernstein JG, Boyden ES (2010) Scalable fluidic injector arrays for viral targeting of intact 3-D brain circuits. J Vis Exp 35:1489PubMedGoogle Scholar
  128. 128.
    (2007) Retracing events. Nat Biotechnol 25:949Google Scholar
  129. 129.
    Bi A et al (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33PubMedCrossRefGoogle Scholar
  130. 130.
    Lagali PS et al (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667–675PubMedCrossRefGoogle Scholar
  131. 131.
    Campagnola L, Wang H, Zylka MJ (2008) Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing channelrhodopsin-2. J Neurosci Methods 169:27–33PubMedCrossRefGoogle Scholar
  132. 132.
    Rickgauer JP, Tank DW. In: Neuroscience 2008. Society for NeuroscienceGoogle Scholar
  133. 133.
    Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457:1142–1145PubMedCrossRefGoogle Scholar
  134. 134.
    Farah N, Reutsky I, Shoham S (2007) Patterned optical activation of retinal ganglion cells. Conf Proc IEEE Eng Med Biol Soc 2007:6369–6371Google Scholar
  135. 135.
    Guo ZV, Hart AC, Ramanathan S (2009) Optical interrogation of neural circuits in Caenorhabditis elegans. Nat Methods 6:891–896PubMedCrossRefGoogle Scholar
  136. 136.
    Bernstein J et al (2008) A scalable toolbox for systematic, cell-specific optical control of entire 3-D neural circuits in the intact mammalian brain. Society for NeuroscienceGoogle Scholar
  137. 137.
    Bernstein JG et al (2009) Modulation of fear behavior via optical fiber arrays targeted to bilateral prefrontal cortex. Society for NeuroscienceGoogle Scholar
  138. 138.
    Ayling OG, Harrison TC, Boyd JD, Goroshkov A, Murphy TH (2009) Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat Methods 6:219–224PubMedCrossRefGoogle Scholar
  139. 139.
    Honda K (2004) Dawn of the evolution of photoelectrochemistry. J Photochem Photobiol A Chem 166:63–68CrossRefGoogle Scholar
  140. 140.
    Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344PubMedCrossRefGoogle Scholar
  141. 141.
    Chow YC, Han X, Bernstein JG, Monahan PE, Boyden ES (2011) Light-activated ion pumps and channels for temporally precise optical control of activity in genetically targeted neurons. In: Chambers JJ, Kramer RH (eds) Photosensitive molecules for controlling biological function. Neuromethods, vol 55. Springer, New York, doi:  10.1007/978-1-61779-031-7

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Brian Y. Chow
    • 1
    • 2
  • Xue Han
    • 1
    • 2
  • Jacob G. Bernstein
    • 1
    • 2
  • Patrick E. Monahan
    • 1
    • 2
  • Edward S. Boyden
    • 1
    • 2
  1. 1.MIT Media Lab, Department of Biological EngineeringMcGovern InstituteCambridgeUSA
  2. 2.Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations