Skip to main content

Strategies for Multi-Target Directed Ligands: Application in Alzheimer’s Disease (AD) Therapeutics

  • Protocol
  • First Online:
Multi-Target Drug Design Using Chem-Bioinformatic Approaches

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Design of multi-target directed ligand (MTDL) is believed to be a novel and improved approach for diseases that elucidate a multifactorial nature. Alzheimer’s disease (AD) is related to increased levels of the amyloid β peptide (Aβ), the hyperphosphorylated tau protein, free radicals, oxidized proteins and lipids, metal ion dysregulation and many more. For the multifactorial aetiology of AD and the fact that till date there is no effective treatment besides drugs alleviating associated symptoms, molecules designed to hit simultaneously different key targets of the complex pathological network emerges as a more realistic alternative. In this context, the present chapter puts forward a note of several strategies adopted for the development of MTDLs for the disease followed by a case study leading to in vitro validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rutherford GW, Sangani PR, Kennedy GE (2003) Three- or four- versus two-drug antiretroviral maintenance regimens for HIV infection. Cochrane Database Syst Rev (4):CD002037

    Google Scholar 

  2. Chung KF, Adcock IM (2004) Combination therapy of long-acting b2-adrenoceptor agonists and corticosteroids for asthma. Treat Respir Med 3(5):279–289

    Article  CAS  PubMed  Google Scholar 

  3. Frishman WH, Zuckerman AL (2004) Amlodipine/atorvastatin: the first cross risk factor polypill for the prevention and treatment of cardiovascular disease. Expert Rev Cardiovasc Ther 2(5):675–681

    Article  CAS  PubMed  Google Scholar 

  4. Zerkak D, Dougados M (2004) Benefit/risk of combination therapies. Clin Exp Rheumatol 22(5 Suppl 35):S71–S76

    CAS  PubMed  Google Scholar 

  5. Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4(1):71–78

    Article  CAS  PubMed  Google Scholar 

  6. Smid P, Coolen HK, Keizer HG et al (2005) Synthesis, structure-activity relationships, and biological properties of 1-heteroaryl-4-[w-(1H-indol-3-yl)alkyl]piperazines, novel potential antipsychotics combining potent dopamine D2 receptor antagonism with potent serotonin reuptake inhibition. J Med Chem 48(22):6855–6869

    Article  CAS  PubMed  Google Scholar 

  7. Holmes HM, Sachs GA, Shega JW et al (2008) Integrating palliative medicine into the care of persons with advanced dementia: identifying appropriate medication use. J Am Geriatr Soc 56(7):1306–1311

    Article  PubMed  Google Scholar 

  8. Van der Schyf CJ, Youdim MB (2009) Multifunctional drugs as neurotherapeutics. Neurotherapeutics 6(1):1–3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Morphy R, Rankovic Z (2005) Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 48(21):6523–6543

    CAS  PubMed  Google Scholar 

  10. Morphy R, Rankovic Z (2009) Designing multiple ligands – medicinal chemistry strategies and challenges. Curr Pharm Des 15(6):587–600

    Article  CAS  PubMed  Google Scholar 

  11. Stahl SM (2009) Multifunctional drugs: a novel concept for psychopharmacology. CNS Spectr 14(2):71–73

    Article  PubMed  Google Scholar 

  12. Youdim MB, Van der Schyf CJ (2007) Magic bullets or novel multimodal drugs with various targets for Parkinson’s disease? Nat Rev Drug Discov 6(6):iii–ivi

    Article  Google Scholar 

  13. Bolognesi ML, Matera R, Minarini A et al (2009) Alzheimer’s disease: new approaches to drug discovery. Curr Opin Chem Biol 13(3):303–308

    Article  CAS  PubMed  Google Scholar 

  14. Bolognesi ML, Rosini M, Andrisano V (2009) MTDL design strategy in the context of Alzheimer’s disease: from lipocrine to memoquin and beyond. Curr Pharm Des 15(6):601–613

    Article  CAS  PubMed  Google Scholar 

  15. Pruss RM (2010) Phenotypic screening strategies for neurodegenerative diseases: a pathway to discover novel drug candidates and potential disease targets or mechanisms. CNS Neurol Disord Drug Targets 9(6):693–700

    Article  CAS  PubMed  Google Scholar 

  16. Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 14(4):478–500

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bar-Am O, Amit T, Weinreb O et al (2010) Propargylamine containing compounds as modulators of proteolytic cleavage of amyloid-b protein precursor: involvement of MAPK and PKC activation. J Alzheimers Dis 21(2):361–371

    Article  CAS  PubMed  Google Scholar 

  18. Van der Schyf CJ, Geldenhuys WJ, Youdim MB (2006) Multifunctional drugs with different CNS targets for neuropsychiatric disorders. J Neurochem 99(4):1033–1048

    Article  PubMed  Google Scholar 

  19. Chertkow Y, Weinreb O, Youdim MB et al (2009) Molecular mechanisms underlying synergistic effects of SSRI-antipsychotic augmentation in treatment of negative symptoms in schizophrenia. J Neural Transm 116(11):1529–1541

    Article  CAS  PubMed  Google Scholar 

  20. Huang W, Tang L, Shi Y, Huang S, Xu L, Sheng R, Wu P, Li J, Zhou N, Hu Y (2011) Searching for the multi-target-directed ligands against Alzheimer’s disease: discovery of quinoxaline-based hybrid compounds with AChE, H3R and BACE 1 inhibitory activities. Bioorg Med Chem 19(23):7158–7167

    Article  CAS  PubMed  Google Scholar 

  21. Fang J, Li Y, Liu R, Pang X, Li C, Yang R, He Y, Lian W, Liu AL, Du GH (2015) Discovery of multi target-directed ligands against Alzheimer’s disease through systematic prediction of chemical-protein interactions. J Chem Inf Model 55(1):149–164

    Article  CAS  PubMed  Google Scholar 

  22. Rosini M, Simoni E, Minarini A, Melchiorre C (2014) Multi-target design strategies in the context of Alzheimer’s disease: acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochem Res 39(10):1914–1923

    Article  CAS  PubMed  Google Scholar 

  23. Luo Z, Sheng J, Sun Y, Lu C, Yan J, Liu A, Luo HB, Huang L (2013) Synthesis and evaluation of multi-target-directed ligands against Alzheimer’s disease based on the fusion of donepezil and ebselen. J Med Chem 56(22):9089–9099

    Article  CAS  PubMed  Google Scholar 

  24. Chakraborty S, Bandyopadhyay J, Chakraborty S, Basu S (2016) Multi-target screening mines hesperidin as a multi-potent inhibitor: implications in Alzheimer’s disease therapeutics. Eur J Med Chem 121:810–822

    Article  CAS  PubMed  Google Scholar 

  25. Hyperchem (2002) Hypercube, Inc., USA

    Google Scholar 

  26. Chakraborty S, Basu S (2015) Structural insight into the mechanism of amyloid precursor protein recognition by β-secretase 1: a molecular dynamics study. Biophys Chem 202:1–12

    Article  CAS  PubMed  Google Scholar 

  27. Chakraborty S, Kumar S, Basu S (2011) Conformational transition in the substrate binding domain of β-secretase exploited by NMA and its implication in inhibitor recognition: BACE1-myricetin a case study. Neurochem Int 58(8):914

    Article  CAS  PubMed  Google Scholar 

  28. CODESSA [computer program] (1995) Version 2.7.16. Comprehensive descriptor for structure and statistical analysis. Copyright center of heterocyclic chemistry, University of Florida and Institute of Chemical Physics, University of Tartu, Estonia and SemiChem Inc

    Google Scholar 

  29. AMPAC 9.0, © (1994) Semichem, 7128 Summit, Shawnee, KS 66216

    Google Scholar 

  30. Chakraborty S, Basu S (2014) Insight into the anti-amyloidogenic activity of polyphenols and its application in virtual screening of phytochemical database. Med Chem Res. https://doi.org/10.1007/s00044-014-1081-2

    Article  CAS  Google Scholar 

  31. Chakraborty S, Basu S (2014) Mechanistic insight into the radical scavenging activity of polyphenols and its application in virtual screening of phytochemical library: an in silico approach. Eur Food Res Technol. https://doi.org/10.1007/s00217-014-2285-x

    Article  CAS  Google Scholar 

  32. Satyamitra M, Mantena S, Nair CKK, Chandna S, Dwarakanath BS, Devi PU (2014) The antioxidant flavonoids, orientin and vicenin enhance repair of radiation-induced damage. SAJ Pharm Pharmacol 1:1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumalee Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Das, S., Basu, S. (2018). Strategies for Multi-Target Directed Ligands: Application in Alzheimer’s Disease (AD) Therapeutics. In: Roy, K. (eds) Multi-Target Drug Design Using Chem-Bioinformatic Approaches. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2018_8

Download citation

  • DOI: https://doi.org/10.1007/7653_2018_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8732-0

  • Online ISBN: 978-1-4939-8733-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics