Skip to main content

Cheminformatics Approaches to Study Drug Polypharmacology

  • Protocol
  • First Online:
Multi-Target Drug Design Using Chem-Bioinformatic Approaches

Abstract

Herein is presented a tutorial overview on selected chemoinformatics methods useful for assembling, curating/preparing a chemical database, and assessing its diversity and chemical space. Methods for evaluating the structure–activity relationships (SAR) and polypharmacology are also included. Usage of open source tools is emphasized. Step-by-step KNIME workflows are used for illustrating the methods. The methods described in this chapter are applied onto a chemical database especially relevant for epi-polypharmacology that is an emerging area in drug discovery. However, the methods described herein could be extended to other therapeutic areas and potentially to other areas of chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosini M (2014) Polypharmacology: the rise of multitarget drugs over combination therapies. Future Med Chem 6:485–487. https://doi.org/10.4155/fmc.14.25

    Article  CAS  PubMed  Google Scholar 

  2. Méndez-Lucio O, Naveja JJ, Vite-Caritino H et al (2016) Review. One drug for multiple targets: a computational perspective. J Mex Chem Soc 60:168–181

    Google Scholar 

  3. Saldívar-González FI, Naveja JJ, Palomino-Hernández O, Medina-Franco JL (2017) Getting SMARt in drug discovery: chemoinformatics approaches for mining structure–multiple activity relationships. RSC Adv 7:632–641. https://doi.org/10.1039/C6RA26230A

    Article  Google Scholar 

  4. González-Medina M, Naveja JJ, Sánchez-Cruz N, Medina-Franco JL (2017) Open chemoinformatic resources to explore the structure, properties and chemical space of molecules. RSC Adv 7:54153–54163. https://doi.org/10.1039/C7RA11831G

    Article  Google Scholar 

  5. Berthold MR, Cebron N, Dill F et al (2009) KNIME – the Konstanz information miner. SIGKDD Explor Newsl 11:26. https://doi.org/10.1145/1656274.1656280

    Article  Google Scholar 

  6. Varnek A (2017) Tutorials in chemoinformatics. https://doi.org/10.1002/9781119161110

    Book  Google Scholar 

  7. Saldívar-González FI, Hernández-Luis F, Lira-Rocha A, Medina-Franco JL (2017) Manual de Quimioinformática, 1st edn. Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  8. González-Medina M, Medina-Franco JL (2017) Platform for unified molecular analysis: PUMA. J Chem Inf Model 57:1735–1740. https://doi.org/10.1021/acs.jcim.7b00253

    Article  CAS  PubMed  Google Scholar 

  9. González-Medina M, Méndez-Lucio O, Medina-Franco JL (2017) Activity landscape plotter: a web-based application for the analysis of structure-activity relationships. J Chem Inf Model 57:397–402. https://doi.org/10.1021/acs.jcim.6b00776

    Article  CAS  PubMed  Google Scholar 

  10. González-Medina M, Prieto-Martínez FD, Owen JR, Medina-Franco JL (2016) Consensus diversity plots: a global diversity analysis of chemical libraries. J Cheminform 8:63. https://doi.org/10.1186/s13321-016-0176-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Naveja JJ, Oviedo-Osornio CI, Trujillo-Minero NN, Medina-Franco JL (2017) Chemoinformatics: a perspective from an academic setting in Latin America. Mol Divers. https://doi.org/10.1007/s11030-017-9802-3

    Article  PubMed  Google Scholar 

  12. Richter L, Ecker GF (2015) Medicinal chemistry in the era of big data. Drug Discov Today Technol 14:37–41. https://doi.org/10.1016/j.ddtec.2015.06.001

    Article  PubMed  Google Scholar 

  13. Law V, Knox C, Djoumbou Y et al (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097. https://doi.org/10.1093/nar/gkt1068

    Article  CAS  PubMed  Google Scholar 

  14. Bento AP, Gaulton A, Hersey A et al (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090. https://doi.org/10.1093/nar/gkt1031

    Article  CAS  PubMed  Google Scholar 

  15. Irwin JJ, Shoichet BK (2005) ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182. https://doi.org/10.1021/ci049714+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu T, Lin Y, Wen X et al (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:D198–D201. https://doi.org/10.1093/nar/gkl999

    Article  CAS  PubMed  Google Scholar 

  17. Lavecchia A, Cerchia C (2016) In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov Today 21:288–298. https://doi.org/10.1016/j.drudis.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  18. Fourches D, Muratov E, Tropsha A (2016) Trust, but verify II: a practical guide to chemogenomics data curation. J Chem Inf Model 56:1243–1252. https://doi.org/10.1021/acs.jcim.6b00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hersey A, Chambers J, Bellis L et al (2015) Chemical databases: curation or integration by user-defined equivalence? Drug Discov Today Technol 14:17–24. https://doi.org/10.1016/j.ddtec.2015.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  20. Miller MA (2002) Chemical database techniques in drug discovery. Nat Rev Drug Discov 1:220–227. https://doi.org/10.1038/nrd745

    Article  CAS  PubMed  Google Scholar 

  21. Cherkasov A, Muratov EN, Fourches D et al (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57:4977–5010. https://doi.org/10.1021/jm4004285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mansouri K, Abdelaziz A, Rybacka A et al (2016) CERAPP: collaborative estrogen receptor activity prediction project. Environ Health Perspect 124:1023–1033. https://doi.org/10.1289/ehp.1510267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gally J-M, Bourg S, Do Q-T et al (2017) Vsprep: a general KNIME workflow for the preparation of molecules for virtual screening. Mol Inform. https://doi.org/10.1002/minf.201700023

    Article  Google Scholar 

  24. Naveja JJ, Medina-Franco JL (2017) Insights from pharmacological similarity of epigenetic targets in epipolypharmacology. Drug Discov Today. https://doi.org/10.1016/j.drudis.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  25. Medina-Franco JL, Martinez-Mayorga K, Meurice N (2014) Balancing novelty with confined chemical space in modern drug discovery. Expert Opin Drug Discov 9:151–165. https://doi.org/10.1517/17460441.2014.872624

    Article  CAS  PubMed  Google Scholar 

  26. Sheridan RP, Kearsley SK (2002) Why do we need so many chemical similarity search methods? Drug Discov Today 7:903–911. https://doi.org/10.1016/S1359-6446(02)02411-X

    Article  PubMed  Google Scholar 

  27. Medina-Franco JL, Maggiora GM (2013) Molecular similarity analysis. In: Bajorath J (ed) Chemoinformatics for drug discovery. Wiley, Hoboken, NJ, pp 343–399. https://doi.org/10.1002/9781118742785.ch15

    Chapter  Google Scholar 

  28. Singh N, Guha R, Giulianotti MA et al (2009) Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository. J Chem Inf Model 49:1010–1024. https://doi.org/10.1021/ci800426u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu J, Hagler A (2002) Chemoinformatics and drug discovery. Molecules 7:566–600. https://doi.org/10.3390/70800566

    Article  CAS  PubMed Central  Google Scholar 

  30. Gortari EF, Medina-Franco JL (2015) Epigenetic relevant chemical space: a chemoinformatic characterization of inhibitors of DNA methyltransferases. RSC Adv 5:87465–87476. https://doi.org/10.1039/C5RA19611F

    Article  CAS  Google Scholar 

  31. Eckert H, Bajorath J (2007) Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today 12:225–233. https://doi.org/10.1016/j.drudis.2007.01.011

    Article  CAS  PubMed  Google Scholar 

  32. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754. https://doi.org/10.1021/ci100050t

    Article  CAS  PubMed  Google Scholar 

  33. Ewing T, Baber JC, Feher M (2006) Novel 2D fingerprints for ligand-based virtual screening. J Chem Inf Model 46:2423–2431. https://doi.org/10.1021/ci060155b

    Article  CAS  PubMed  Google Scholar 

  34. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42:1273–1280. https://doi.org/10.1021/ci010132r

    Article  CAS  PubMed  Google Scholar 

  35. Jaccard P (1901) Etude Comparative de la Distribution Florale dans une Portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat 37:547–579

    Google Scholar 

  36. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39:2887–2893. https://doi.org/10.1021/jm9602928

    Article  CAS  PubMed  Google Scholar 

  37. Xu Y-J, Johnson M (2002) Using molecular equivalence numbers to visually explore structural features that distinguish chemical libraries. J Chem Inf Comput Sci 42:912–926

    Article  CAS  PubMed  Google Scholar 

  38. Medina-Franco J, Martínez-Mayorga K, Bender A, Scior T (2009) Scaffold diversity analysis of compound data sets using an entropy-based measure. QSAR Comb Sci 28:1551–1560. https://doi.org/10.1002/qsar.200960069

    Article  CAS  Google Scholar 

  39. Shanmugasundaram V, Maggiora GM (2001) Characterizing property and activity landscapes using an information-theoretic approach. CINF-032. In 222nd ACS National Meeting, Chicago, IL, USA; August 26–30, 2001; American Chemical Society, Washington, DC

    Google Scholar 

  40. Guha R (2012) Exploring structure-activity data using the landscape paradigm. Wiley Interdiscip Rev Comput Mol Sci. https://doi.org/10.1002/wcms.1087

    Google Scholar 

  41. Bajorath J, Peltason L, Wawer M et al (2009) Navigating structure-activity landscapes. Drug Discov Today 14:698–705. https://doi.org/10.1016/j.drudis.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  42. Medina-Franco JL (2012) Scanning structure-activity relationships with structure-activity similarity and related maps: from consensus activity cliffs to selectivity switches. J Chem Inf Model 52:2485–2493. https://doi.org/10.1021/ci300362x

    Article  CAS  PubMed  Google Scholar 

  43. Medina-Franco JL, Petit J, Maggiora GM (2006) Hierarchical strategy for identifying active chemotype classes in compound databases. Chem Biol Drug Des 67:395–408. https://doi.org/10.1111/j.1747-0285.2006.00397.x

    Article  CAS  PubMed  Google Scholar 

  44. Maggiora G, Gokhale V (2017) A simple mathematical approach to the analysis of polypharmacology and polyspecificity data. [version 1; referees: 3 approved, 1 approved with reservations]. F1000Res. https://doi.org/10.12688/f1000research.11517.1

    Article  Google Scholar 

  45. Pérez-Villanueva J, Santos R, Hernández-Campos A et al (2011) Structure–activity relationships of benzimidazole derivatives as antiparasitic agents: dual activity-difference (DAD) maps. Med Chem Commun 2:44–49. https://doi.org/10.1039/C0MD00159G

    Article  Google Scholar 

  46. Yongye AB, Medina-Franco JL (2012) Data mining of protein-binding profiling data identifies structural modifications that distinguish selective and promiscuous compounds. J Chem Inf Model 52:2454–2461. https://doi.org/10.1021/ci3002606

    Article  CAS  PubMed  Google Scholar 

  47. Osolodkin DI, Radchenko EV, Orlov AA et al (2015) Progress in visual representations of chemical space. Expert Opin Drug Discov 10:959–973. https://doi.org/10.1517/17460441.2015.1060216

    Article  CAS  PubMed  Google Scholar 

  48. Medina-Franco J, Martinez-Mayorga K, Giulianotti M et al (2008) Visualization of the chemical space in drug discovery. Curr Comput Aided Drug Des 4:322–333. https://doi.org/10.2174/157340908786786010

    Article  CAS  Google Scholar 

  49. Fernández-de Gortari E, García-Jacas CR, Martinez-Mayorga K, Medina-Franco JL (2017) Database fingerprint (DFP): an approach to represent molecular databases. J Cheminform 9:9. https://doi.org/10.1186/s13321-017-0195-1

    Article  PubMed  PubMed Central  Google Scholar 

  50. Naveja JJ, Medina-Franco JL (2017) ChemMaps: towards an approach for visualizing the chemical space based on adaptive satellite compounds [version 1; referees: 1 approved, 2 approved with reservations]. F1000Res. https://doi.org/10.12688/f1000research.12095.1

    Article  Google Scholar 

  51. Naveja JJ, Medina-Franco JL (2015) Activity landscape sweeping: insights into the mechanism of inhibition and optimization of DNMT1 inhibitors. RSC Adv 5:63882–63895. https://doi.org/10.1039/C5RA12339A

    Article  CAS  Google Scholar 

  52. Wale N, Karypis G (2009) Target fishing for chemical compounds using target-ligand activity data and ranking based methods. J Chem Inf Model 49:2190–2201. https://doi.org/10.1021/ci9000376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jenkins JL, Bender A, Davies JW (2006) In silico target fishing: predicting biological targets from chemical structure. Drug Discov Today Technol 3:413–421. https://doi.org/10.1016/j.ddtec.2006.12.008

    Article  Google Scholar 

  54. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature 194:178–180. https://doi.org/10.1038/194178b0

    Article  CAS  Google Scholar 

  55. Nettles JH, Jenkins JL, Bender A et al (2006) Bridging chemical and biological space: “target fishing” using 2D and 3D molecular descriptors. J Med Chem 49:6802–6810. https://doi.org/10.1021/jm060902w

    Article  CAS  PubMed  Google Scholar 

  56. Cramer RD (2012) The inevitable QSAR renaissance. J Comput Aided Mol Des 26:35–38. https://doi.org/10.1007/s10822-011-9495-0

    Article  CAS  PubMed  Google Scholar 

  57. Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20:318–331. https://doi.org/10.1016/j.drudis.2014.10.012

    Article  PubMed  Google Scholar 

  58. Yao Z-J, Dong J, Che Y-J et al (2016) TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models. J Comput Aided Mol Des 30:413–424. https://doi.org/10.1007/s10822-016-9915-2

    Article  CAS  PubMed  Google Scholar 

  59. Nidhi, Glick M, Davies JW, Jenkins JL (2006) Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J Chem Inf Model 46:1124–1133. https://doi.org/10.1021/ci060003g

    Article  CAS  PubMed  Google Scholar 

  60. Kawai K, Fujishima S, Takahashi Y (2008) Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines. J Chem Inf Model 48:1152–1160. https://doi.org/10.1021/ci7004753

    Article  CAS  PubMed  Google Scholar 

  61. Nikolic K, Mavridis L, Djikic T et al (2016) Drug design for CNS diseases: polypharmacological profiling of compounds using cheminformatic, 3D-QSAR and virtual screening methodologies. Front Neurosci 10:265. https://doi.org/10.3389/fnins.2016.00265

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rognan D (2010) Structure-based approaches to target fishing and ligand profiling. Mol Inform 29:176–187. https://doi.org/10.1002/minf.200900081

    Article  CAS  PubMed  Google Scholar 

  63. Awale M, Reymond J-L (2017) The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data. J Cheminform 9:11. https://doi.org/10.1186/s13321-017-0199-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kunimoto R, Dimova D, Bajorath J (2017) Application of a new scaffold concept for computational target deconvolution of chemical cancer cell line screens. ACS Omega 2:1463–1468. https://doi.org/10.1021/acsomega.7b00215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reker D, Rodrigues T, Schneider P, Schneider G (2014) Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci U S A 111:4067–4072. https://doi.org/10.1073/pnas.1320001111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zheng W, Thorne N, McKew JC (2013) Phenotypic screens as a renewed approach for drug discovery. Drug Discov Today 18:1067–1073. https://doi.org/10.1016/j.drudis.2013.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee J, Bogyo M (2013) Target deconvolution techniques in modern phenotypic profiling. Curr Opin Chem Biol 17:118–126. https://doi.org/10.1016/j.cbpa.2012.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mugumbate G, Mendes V, Blaszczyk M et al (2017) Target identification of mycobacterium tuberculosis phenotypic hits using a concerted chemogenomic, biophysical, and structural approach. Front Pharmacol 8:681. https://doi.org/10.3389/fphar.2017.00681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) grant IA203718 and National Council of Science and Technology (CONACyT), Mexico grant number 282785. JJN, FIS-G, and NS-C are thankful to CONACyT for the granted scholarships number 622969, 629458, and 335997, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Medina-Franco .

Editor information

Editors and Affiliations

Additional information

This work is dedicated to the loving memory of Nicolás Medina Sandoval.

1 Electronic Supplementary Material

The following supplementary KNIME files with exemplary workflows are provided:

Supplementary KNIME Workflow 1

Chemical preprocessing and database curation (KNWF 168 kb)

Supplementary KNIME Workflow 2

Chemical diversity analysis (KNWF 92 kb)

Supplementary KNIME Workflow 3

Consensus diversity plots (KNWF 127 kb)

Supplementary KNIME Workflow 4

SmARt analyses (KNWF 211 kb)

Supplementary KNIME Workflow 5

Chemical space (KNWF 399 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Naveja, J.J., Saldívar-González, F.I., Sánchez-Cruz, N., Medina-Franco, J.L. (2018). Cheminformatics Approaches to Study Drug Polypharmacology. In: Roy, K. (eds) Multi-Target Drug Design Using Chem-Bioinformatic Approaches. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2018_6

Download citation

  • DOI: https://doi.org/10.1007/7653_2018_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8732-0

  • Online ISBN: 978-1-4939-8733-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics