Skip to main content

Computational Design of Multi-target Kinase Inhibitors

  • Protocol
  • First Online:
Multi-Target Drug Design Using Chem-Bioinformatic Approaches

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1299 Accesses

Abstract

As key regulators of every aspect of cell function, protein kinases are frequently associated with various human diseases. Therefore, protein kinase inhibition has become the second most important group of drug targets, after G-protein-coupled receptors. Owing to the complex and polygenic nature of diseases, designing multi-kinase small molecule inhibitors as potential therapies is gaining major consideration. Effective in silico drug design strategies are desired to identify multi-target kinase inhibitors. In this chapter, we summarize the two such effective computational strategies reported by our group to identify multi-target kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu P, Nielsen TE, Clausen MH (2016) Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov Today 21:5–10

    Article  CAS  Google Scholar 

  2. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39

    Article  Google Scholar 

  3. Wu P, Nielsen TE, Clausen MH (2015) FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci 36:422–439

    Article  CAS  Google Scholar 

  4. Yaish P, Gazit A, Gilon C et al (1988) Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science 242:933–935

    Article  CAS  Google Scholar 

  5. Divito SJ, Kupper TS (2014) Inhibiting Janus kinases to treat alopecia areata. Nat Med 20:989–990

    Article  CAS  Google Scholar 

  6. Hendriks RW, Yuvaraj S, Kil LP (2014) Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer 14:219–232

    Article  CAS  Google Scholar 

  7. Wu P, Hu Y (2012) Small molecules targeting phosphoinositide 3-kinases. MedChemComm 3:1337–1355

    Article  CAS  Google Scholar 

  8. Wu P, Hu YZ (2010) PI3K/Akt/mTOR pathway inhibitors in cancer: a perspective on clinical progress. Curr Med Chem 17:4326–4341

    Article  CAS  Google Scholar 

  9. Li YH, Wang PP, Li XX et al (2016) The human kinome targeted by FDA approved multi-target drugs and combination products: a comparative study from the drug-target interaction network perspective. PLoS One 11:e0165737

    Article  Google Scholar 

  10. Rask-Andersen M, Zhang J, Fabbro D et al (2014) Advances in kinase targeting: current clinical use and clinical trials. Trends Pharmacol Sci 35:604–620

    Article  CAS  Google Scholar 

  11. Yang H, Qin C, Li YH et al (2016) Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res 44:D1069–D1074

    Article  CAS  Google Scholar 

  12. Boran ADW, Iyengar R (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 13:297–309

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dar AC, Das TK, Shokat KM et al (2012) Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486:80–84

    Article  CAS  Google Scholar 

  14. Korcsmáros T, Szalay MS, Böde C et al (2007) How to design multi-target drugs: target search options in cellular networks. Expert Opin Drug Discov 2:799–808

    Article  Google Scholar 

  15. Zhang S (2011) Computer-aided drug discovery and development. In: Satyanarayanajois SD (ed) Drug design and discovery: methods and protocols. Humana Press, Totowa, NJ, pp 23–38

    Chapter  Google Scholar 

  16. Ma XH, Shi Z, Tan C et al (2010) In-silico approaches to multi-target drug discovery. Pharm Res 27:739–749

    Article  CAS  Google Scholar 

  17. Clemente JC, Govindasamy L, Madabushi A et al (2006) Structure of the aspartic protease plasmepsin 4 from the malarial parasite Plasmodium malariae bound to an allophenylnorstatine-based inhibitor. Acta Crystallogr Sect D 62:246–252

    Article  Google Scholar 

  18. Wei D, Jiang X, Zhou L et al (2008) Discovery of multitarget inhibitors by combining molecular docking with common pharmacophore matching. J Med Chem 51:7882–7888

    Article  CAS  Google Scholar 

  19. Nair SB, Fayaz SM, Rajanikant GK (2013) A novel multi-target drug screening strategy directed against key proteins of DAPk family. Comb Chem High Throughput Screen 16:449–457

    Article  CAS  Google Scholar 

  20. Fayaz SM, Rajanikant GK (2015) Ensembling and filtering: an effective and rapid in silico multitarget drug-design strategy to identify RIPK1 and RIPK3 inhibitors. J Mol Model 21:314

    Article  CAS  Google Scholar 

  21. Zou J, Xie HZ, Yang SY et al (2008) Towards more accurate pharmacophore modeling: multicomplex-based comprehensive pharmacophore map and most-frequent-feature pharmacophore model of CDK2. J Mol Graph Model 27:430–438

    Article  CAS  Google Scholar 

  22. Ren J, Xie L, Li WW et al (2010) SMAP-WS: a parallel web service for structural proteome-wide ligand-binding site comparison. Nucleic Acids Res 38:441–444

    Article  Google Scholar 

  23. Fayaz SM, Rajanikant GK (2014) Ensemble pharmacophore meets ensemble docking: a novel screening strategy for the identification of RIPK1 inhibitors. J Comput Aided Mol Des 28:779–794

    Article  CAS  Google Scholar 

  24. Cui Z, Chen S, Wang Y et al (2017) Design, synthesis and evaluation of azaacridine derivatives as dual-target EGFR and Src kinase inhibitors for antitumor treatment. Eur J Med Chem 136:372–381

    Article  CAS  Google Scholar 

  25. Cui Z, Li X, Li L et al (2016) Design, synthesis and evaluation of acridine derivatives as multi-target Src and MEK kinase inhibitors for anti-tumor treatment. Bioorg Med Chem 24:261–269

    Article  CAS  Google Scholar 

  26. Reker D, Seet M, Pillong M et al (2014) Deorphaning pyrrolopyrazines as potent multi-target antimalarial agents. Angew Chem Int Ed 53:7079–7084

    Article  CAS  Google Scholar 

  27. Rehan M (2015) A structural insight into the inhibitory mechanism of an orally active PI3K/mTOR dual inhibitor, PKI-179 using computational approaches. J Mol Graph Model 62:226–234

    Article  CAS  Google Scholar 

  28. Ajmani S, Viswanadhan VN (2013) A neural network-based QSAR approach for exploration of diverse multi-tyrosine kinase inhibitors and its comparison with a fragment-based approach. Curr Comput Aided Drug Des 9:482–490

    Article  CAS  Google Scholar 

  29. Marzaro G, Chilin A, Guiotto A et al (2011) Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors. Eur J Med Chem 46:2185–2192

    Article  CAS  Google Scholar 

  30. Wassermann AM, Peltason L, Bajorath J (2010) Computational analysis of multi-target structure-activity relationships to derive preference orders for chemical modifications toward target selectivity. ChemMedChem 5:847–858

    Article  CAS  Google Scholar 

  31. Allen BK, Mehta S, Ember SWJ et al (2015) Large-scale computational screening identifies first in class multitarget inhibitor of EGFR kinase and BRD4. Sci Rep 5:16924

    Article  CAS  Google Scholar 

  32. Hsu K-C, Cheng W-C, Chen Y-F et al (2012) Core site-moiety maps reveal inhibitors and binding mechanisms of orthologous proteins by screening compound libraries. PLoS One 7:e32142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Rajanikant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sugunan, S., Rajanikant, G.K. (2018). Computational Design of Multi-target Kinase Inhibitors. In: Roy, K. (eds) Multi-Target Drug Design Using Chem-Bioinformatic Approaches. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2018_5

Download citation

  • DOI: https://doi.org/10.1007/7653_2018_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8732-0

  • Online ISBN: 978-1-4939-8733-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics