Skip to main content

Design of Novel Dual-Target Hits Against Malaria and Tuberculosis Using Computational Docking

  • Protocol
  • First Online:
Multi-Target Drug Design Using Chem-Bioinformatic Approaches

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1284 Accesses

Abstract

Drugs which are purposefully designed to hit more than one target (multi-target drugs) promise a better safety profile and low resistance probability. Multi-target therapy also offers a cost-effective model for pharmaceutical R&D, making it quite an appealing strategy in the domain of neglected tropical diseases (NTDs) and other infections/coinfections of the global impact such as malaria, tuberculosis, and AIDS. We reviewed herein different approaches (knowledge base and screening base) for designing multi-target inhibitors with the special emphasis on the research work of the authors. Additionally, a step-by-step guide (protocol) and different computational resources are also discussed in detail to design multi-target hits for malaria and tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

ACD:

Advanced Chemistry Development, Inc.

ADMET:

Absorption, distribution, metabolism, excretion, and toxicity

ADT:

AutoDock Tool

AIDS:

Acquired immune deficiency syndrome

AM1:

Austin model 1

AMBER:

Assisted model building with energy refinement

AMR:

Antimicrobial resistance

BE:

Binding energy

BMRB:

Biological magnetic resonance data bank

CCDC:

The Cambridge Crystallographic Data Centre

CHARMM:

Chemistry at Harvard Macromolecular Mechanics

ChEMBL or ChEMBLdb:

Chemical database of bioactive molecules with drug-like properties

COX:

Cyclooxygenase

DHFR:

Dihydrofolate reductase

DMEs:

Disease-modifying agents

DMLs:

Designed multiple ligands

DSV:

Discovery Studio Visualizer

DUD:

Directory of useful decoys

EGFR:

Epidermal growth factor receptor

EMBL-EBI:

European Bioinformatics Institute

FDA:

Food and Drug Administration, USA

GA:

Genetic algorithm

HIV:

Human immunodeficiency virus

In silico (syn in computo):

Performed on computer

LE:

Ligand efficiency

LGA:

Lamarckian genetic algorithm

LS:

Local search

MAPK:

Mitogen-activated protein kinase

MD:

Molecular dynamics

MDR:

Multidrug resistance

MGLTools:

Molecular Graphics Laboratory tools

MM2:

Molecular mechanics 2

MMV:

Molegro Molecular Viewer

MTDs:

Multi-target drugs

MW:

Molecular weight

NSAIDs:

Nonsteroidal anti-inflammatory drugs

NTDs:

Neglected tropical diseases

OMICS:

Genomics, proteomics, or metabolomics

PAINS:

Pan-assay interference compounds

PDB:

Protein Data Bank

PM3:

Parameterized model number 3

QSAR:

Quantitative structure activity relationship

R&D:

Research and development

RCSB:

Research Collaboratory for Structural Bioinformatics

RMSD/rmsd:

Root-mean-square deviation

SA:

Simulated annealing

SHAFTS:

Shape-Feature Similarity

SITITCH:

Search tool for interacting chemicals

STRING:

Search tool for the retrieval of interacting genes/proteins

TB:

Tuberculosis

TCM:

Traditional Chinese medicines

TDR:

Total drug resistance

TS:

Thymidylate synthase

TTD:

Therapeutic target database

WT:

Wild type

XRD:

Extreme drug resistance

ZINC:

Zinc Is Not Commercial (ZINC database)

References

  1. Bolognesi ML, Cavalli A (2016) Multitarget drug discovery and polypharmacology. ChemMedChem 11:1190–1192

    Article  CAS  Google Scholar 

  2. Koutsoukas A, Simms B, Kirchmair J, Bond PJ, Whitmore AV, Zimmer S, Young MP, Jenkins JL, Glick M, Glen RC, Bender A (2011) From in silico target prediction to multi-target drug design: current databases, methods and applications. J Proteome 74:2554–2574

    Article  CAS  Google Scholar 

  3. Korcsmáros T, Szalay MS, Böde C, Kovács IA, Csermely P (2007) How to design multi-target drugs: target search options in cellular networks. Expert Opin Drug Discov 2:1–10

    Article  Google Scholar 

  4. Ma XH, Shi Z, Tan C, Jiang Y, Go ML, Low BC, Chen YZ (2010) In-silico approaches to multi-target drug discovery computer aided multi-target drug design, multi-target virtual screening. Pharm Res 27:739–749

    Article  CAS  Google Scholar 

  5. Morphy R, Rankovic Z (2005) Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 48:6523–6543

    Article  CAS  Google Scholar 

  6. Jenwitheesuk E, Horst JA, Rivas KL, Voorhis WCV, Samudrala R (2008) Novel paradigms for drug discovery: computational multitarget screening. Trends Pharmacol Sci 29:62–71

    Article  CAS  Google Scholar 

  7. Senger MR, Fraga CA, Dantas RF, Silva FP Jr (2016) Filtering promiscuous compounds in early drug discovery: is it a good idea? Drug Discov Today 21:868–872

    Article  CAS  Google Scholar 

  8. Krug M, Hilgeroth A (2008) Recent advances in the development of multi-kinase inhibitors. Mini Rev Med Chem 8:1312–1327

    Article  CAS  Google Scholar 

  9. Gill AL, Verdonk M, Boyle RG, Taylor R (2007) A comparison of physicochemical property profiles of marketed oral drugs and orally bioavailable anti-cancer protein kinase inhibitors in clinical development. Curr Top Med Chem 7:1408–1422

    Article  CAS  Google Scholar 

  10. Koeberle A, Werz O (2014) Multi-target approach for natural products in inflammation. Drug Discov Today 19:1871–1882

    Article  CAS  Google Scholar 

  11. Amann R, Peskar BA (2002) Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol 447:1–9

    Article  CAS  Google Scholar 

  12. Rockett KA, Clarke GM et al (2014) Reappraisal of known malaria resistance loci in a large multicenter study. Nat Genet 46:1197–1204

    Article  Google Scholar 

  13. Sidhu AB, Verdier-Pinard D, Fidock DA (2002) Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298:210–213

    Article  CAS  Google Scholar 

  14. Leang R, Taylor WR, Bouth DM, Song L, Tarning J, Char MC, Kim S, Witkowski B, Duru V, Domergue A, Khim N, Ringwald P, Menard D (2015) Evidence of Plasmodium falciparum malaria multidrug resistance to artemisinin and piperaquine in western Cambodia: dihydroartemisinin-piperaquine open-label multicenter clinical assessment. Antimicrob Agents Chemother 59:4719–1426

    Article  CAS  Google Scholar 

  15. Ashley EA, Dhorda M, Fairhurst RM et al (2014) Spread of artemisinin resistance in plasmodium falciparum malaria. N Engl J Med 371:411–423

    Article  Google Scholar 

  16. Wright A, Bai G, Barrera L et al (2006) Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs – worldwide, 2000–2004. MMWR Morb Mortal Wkly Rep 55:301–305

    Google Scholar 

  17. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB (2009) Tuberculosis drug resistance mutation database. PLoS Med 6(2):e1000002

    Article  Google Scholar 

  18. Johnson R, Streicher EM, Louw GE, Warren RM, Helden PD, Victor TC (2006) Drug resistance in Mycobacterium tuberculosis. Curr Issues Mol Biol 8:97–112

    CAS  PubMed  Google Scholar 

  19. Oldfield E, Feng X (2014) Resistance-resistant antibiotics. Trends Pharmacol Sci 35:664–674

    Article  CAS  Google Scholar 

  20. Bisson GP, Frank I, Gross R, Lo Re V 3rd, Strom JB, Wang X, Mogorosi M, Gaolathe T, Ndwapi N, Friedman H, Strom BL, Dickinson D (2006) Out-of-pocket costs of HAART limit HIV treatment responses in Botswana’s private sector. AIDS 20:1333–1336

    Article  Google Scholar 

  21. Moya J, Casado JL, Aranzabal L, Moreno A, Antela A, Dronda F, Perez-Elías MJ, Marin A, Moreno S (2006) Limitations of a simplification antiretroviral strategy for HIV-infected patients with decreasing adherence to a protease inhibitor regimen. HIV Clin Trials 7:210–214

    Article  CAS  Google Scholar 

  22. Gutiérrez-de-Terán H, Nervall M, Dunn BM, Clemente JC, Aqvist J (2006) Computational analysis of plasmepsin IV bound to anello phenyl norstatine inhibitor. FEBS Lett 580:5910–5916

    Article  Google Scholar 

  23. Kuhn M, Campillos M, González P, Jensen LJ, Bork P (2008) Large-scale prediction of drug–target relationships. FEBS Lett 582:1283–1290

    Article  CAS  Google Scholar 

  24. Kuhn M, Mering C, Campillos M, Jensen LJ, Bork P (2008) STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 36:D684–D688

    Article  CAS  Google Scholar 

  25. Drug.com database (Daraprim Side Effects) https://www.drugs.com/sfx/daraprim-side-effects.html. Accessed 11 Apr 2018

  26. Osher E, Fattal-Valevski A, Sagie L, Urshanski N, Amir-Levi Y, Katzburg S, Peleg L, Lerman-Sagie T, Zimran A, Elstein D, Navon R, Stern N, Valevski A (2011) Pyrimethamine increases β-hexosaminidase A activity in patients with late onset Tay Sach. Mol Genet Metab Rep 102:356–363

    Article  CAS  Google Scholar 

  27. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683

    Article  CAS  Google Scholar 

  28. Fu RG, Sun Y, Sheng WB, Liao DF (2017) Designing multi-targeted agents: an emerging anticancer drug discovery paradigm. Eur J Med Chem 136:195–211

    Article  CAS  Google Scholar 

  29. Barchéchath S, Williams C, Saade K, Lauwagie S, Jean-Claude B (2009) Rational design of multitargeted tyrosine kinase inhibitors: a novel approach. Chem Biol Drug Des 73:380–387

    Article  Google Scholar 

  30. Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR (2012) Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families. Bioorg Med Chem Lett 22:3208–3212

    Article  CAS  Google Scholar 

  31. Mohamed T, Yeung JC, Vasefi MS, Beazely MA, Rao PP (2012) Development and evaluation of multifunctional agents for potential treatment of Alzheimer’s disease: application to a pyrimidine-2,4-diamine template. Bioorg Med Chem Lett 22:4707–4712

    Article  CAS  Google Scholar 

  32. Carvalho D, Paulino M, Polticelli F, Arredondo F, Williams RJ, Abin-Carriquiry JA (2017) Structural evidence of quercetin multi-target bioactivity: a reverse virtual screening strategy. Eur J Pharm Sci 106:393–403

    Article  CAS  Google Scholar 

  33. Thai NQ, Nguyen HL, Linh HQ, Li MS (2017) Protocol for fast screening of multi-target drug candidates: application to Alzheimer’s disease. J Mol Graph Model 77:121–129

    Article  Google Scholar 

  34. Yousuf Z, Iman K, Iftikhar N, Mirza MU (2017) Structure-based virtual screening and molecular docking for the identification of potential multi-targeted inhibitors against breast cancer. Breast Cancer 9:447–459

    CAS  PubMed  Google Scholar 

  35. Chakraborty S, Basu S (2017) Multi-functional activities of citrus flavonoid narirutin in Alzheimer’s disease therapeutics: an integrated screening approach and in vitro validation. Int J Biol Macromol 103:733–743

    Article  CAS  Google Scholar 

  36. Chakraborty S, Basu S (2017) Dual inhibition of BACE1 and Aβ aggregation by β-ecdysone: application of a phytoecdysteroid scaffold in Alzheimer’s disease therapeutics. Int J Biol Macromol 95:281–287

    Article  CAS  Google Scholar 

  37. Chakraborty S, Bandyopadhyay J, Chakraborty S, Basu S (2016) Multi-target screening mines hesperidin as a multi-potent inhibitor: implication in Alzheimer’s disease therapeutics. Eur J Med Chem 121:810–822

    Article  CAS  Google Scholar 

  38. Li Y, Tan C, Gao C, Zhang C, Luan X, Chen X, Liu H, Chen Y, Jiang Y (2011) Discovery of benzimidazole derivatives as novel multi-target EGFR, VEGFR-2 and PDGFR kinase inhibitors. Bioorg Med Chem 19:4529–4535

    Article  CAS  Google Scholar 

  39. Kumar M, Makhal B, Gupta VK, Sharma A (2014) In silico investigation of medicinal spectrum of imidazo-azines from the perspective of multitarget screening against malaria, tuberculosis and Chagas disease. J Mol Graph Model 50:1–9

    Article  Google Scholar 

  40. Sidorov P, Desta I, Chessé M, Horvath D, Marcou G, Varnek A, Davioud-Charvet E, Elhabiri M (2016) Redox polypharmacology as an emerging strategy to combat malarial parasites. ChemMedChem 11:1339–1351

    Article  CAS  Google Scholar 

  41. Aguilera E, Varela J, Birriel E, Serna E, Torres S, Yaluff G, Bilbao NV, Aguirre-López B, Cabrera N, Mazariegos SD, Gómez-Puyou MT, Gómez-Puyou A, Pérez-Montfort R, Minini L, Merlino A, Cerecetto H, González M, Alvarez G (2016) Potent and selective inhibitors of Trypanosoma cruzi triosephosphate isomerase with concomitant inhibition of cruzipain: inhibition of parasite growth through multitarget activity. ChemMedChem 11:1328–1338

    Article  CAS  Google Scholar 

  42. Álvarez G, Perdomo C, Coronel C, Aguilera E, Varela J, Aparicio G, Zolessi FR, Cabrera N, Vega C, Rolón M, Arias AR, Pérez-Montfort R, Cerecetto H, González M (2017) Multi-anti-parasitic activity of arylidene ketones and thiazolidene hydrazines against Trypanosoma cruzi and Leishmania spp. Molecules 22:709–725

    Article  Google Scholar 

  43. Yuvaniyama J, Chitnumsub P, Kamchonwongpaisan S, Vanichtanankul J, Sirawaraporn W, Taylor P, Walkinshaw MD, Yuthavong Y (2003) Insights into antifolate resistance from malarial DHFR-TS structures. Nat Struct Mol Biol 10:357–365

    Article  CAS  Google Scholar 

  44. Perozzo R, Kuo M, Sidhu AS, Valiyaveettil JT, Bittman R, Jacobs WR Jr, Fidock DA, Sacchettini JC (2002) Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem 277:13106–13114

    Article  CAS  Google Scholar 

  45. Merckx A, Echalier A, Langford K, Sicard A, Langsley G, Joore J, Doerig C, Noble M, Endicott J (2008) Structures of P. falciparum protein kinase 7 identify an activation motif and leads for inhibitor design. Structure 16:228–238

    Article  CAS  Google Scholar 

  46. Dias MV, Faim LM, Vasconcelos IB, de Oliveira JS, Basso LA, Santos DS, de Azevedo WF (2007) Effects of the magnesium and chloride ions and shikimate on the structure of shikimate kinase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:1–6

    Article  CAS  Google Scholar 

  47. Wang S, Eisenberg D (2003) Crystal structures of a pantothenate synthetase from M. tuberculosis and its complexes with substrates and a reaction intermediate. Protein Sci 12:1097–1108

    Article  CAS  Google Scholar 

  48. Li de la Sierra I, Munier-Lehmann H, Gilles AM, Bârzu O, Delarue M (2001) X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 Å resolutions. J Mol Biol 311:87–100

    Article  CAS  Google Scholar 

  49. Basavannacharya C, Robertson G, Munshi T, Keep NH, Bhakta S (2010) ATP-dependent mure ligase in Mycobacterium tuberculosis: biochemical and structural characterisation. Tuberculosis (Edinb) 90:16–24

    Article  CAS  Google Scholar 

  50. Bond CS, Zhang Y, Berriman M, Cunningham ML, Fairlamb AH, Hunter WN (1999) Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure 7:81–89

    Article  CAS  Google Scholar 

  51. Ladame S, Castilho MS, Silva CH, Denier C, Hannaert V, Périé J, Oliva G, Willson M (2003) Crystal structure of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase complexed with an analogue of 1,3-bisphospho-d-glyceric acid. Eur J Biochem 270:4574–4586

    Article  CAS  Google Scholar 

  52. Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, Alzari PM (2004) Structural insights into the catalytic mechanism of Trypanosome cruzi trans-sialidase. Structure 12:775–784

    Article  CAS  Google Scholar 

  53. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  54. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 16:2785–2791

    Article  Google Scholar 

  55. Shaaban S, Abdel-Wahab BF (2016) Groebke–Blackburn–Bienaymé multicomponent reaction: emerging chemistry for drug discovery. Mol Divers 20:233–254

    Article  CAS  Google Scholar 

  56. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  57. Kumar M, Dagar A, Gupta VK, Sharma A (2014) In silico docking studies of bioactive natural plant products as putative DHFR antagonists. Med Chem Res 23:810–817

    Article  CAS  Google Scholar 

  58. Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431

    Article  Google Scholar 

  59. Abad-zapatero C, Metz JT (2005) Ligand efficiency indices as guideposts for drug discovery. Drug Discov Today 10:464–469

    Article  Google Scholar 

  60. Abad-zapatero C (2007) Ligand efficiency indices for effective drug discovery. Expert Opin Drug Discov 4:469–488

    Article  Google Scholar 

  61. Lajiness MS, Vieth M, Erickson J (2004) Molecular properties that influence oral drug-like behavior. Curr Opin Drug Discov Devel 7:470–477

    CAS  PubMed  Google Scholar 

  62. Wunberg T, Hendrix M, Hillisch A, Lobell M, Meier H, Schmeck C, Wild H, Hinzen B (2006) Improving the hit-to-lead process: data-driven assessment of drug-like and lead-like screening hits. Drug Discov Today 11:175–180

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Science and Engineering Research Board (SERB), Govt. of India (Grant No. SER-892-CMD), to financially assist this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, M., Sharma, A. (2018). Design of Novel Dual-Target Hits Against Malaria and Tuberculosis Using Computational Docking. In: Roy, K. (eds) Multi-Target Drug Design Using Chem-Bioinformatic Approaches. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2018_22

Download citation

  • DOI: https://doi.org/10.1007/7653_2018_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8732-0

  • Online ISBN: 978-1-4939-8733-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics