Skip to main content

In Vitro Evaluation of Serine Hydrolase Inhibitors

  • Protocol
  • First Online:
Methods in Pharmacology and Toxicology

Abstract

Serine hydrolases are important in a variety of physiological processes and can be important pharmacological and toxicological molecular targets. A modified photometric method suitable for evaluating inhibition of the serine hydrolases acetylcholinesterase, butyrylcholinesterase, and monoacylglycerol lipase is described. The same reagents and protocol are used for each of the three different enzymes, with the only difference being the substrate. Kinetic considerations for reversible or irreversible inhibitors are discussed. This versatile assay can be used to quickly characterize inhibitory actions (IC50) of test compounds on the three hydrolases, with simple modifications allowing kinetic characterizations (Ki, k2, ki).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bachovchin DA, Cravatt BF (2012) The pharmacological landscape and therapeutic potential of serine hydrolases. Nat Rev Drug Discov 11:52–68

    Google Scholar 

  2. Casida JE, Quistad GB (2005) Serine hydrolase targets of organophosphorus toxicants. Chem Biol Interact 157–158:277–283

    Google Scholar 

  3. Bachovchin DA, Ji T, Li W, Simon GM, Blankman JL, Adibekian A, Hoover H, Niessen S, Cravatt BF (2010) Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. Proc Natl Acad Sci U S A 107:20941–20946

    Google Scholar 

  4. Dudley DA, Bunker AM, Chi L, Cody WL, Holland DR, Ignasiak DP, Janiczek-Dolphin N, McClanahan TB, Mertz TE, Narasimhan LS, Rapundalo ST, Trautschold JA, Van Huis CA, Edmunds JJ (2000) Rational design, synthesis, and biological activity of benzoxazinones as novel factor Xa inhibitors. J Med Chem 43:4063–4070

    Google Scholar 

  5. Kummer JA, Strik MC, Bladergroen BA, Hack CE (2004) Production, characterization, and use of serpin antibodies. Methods 32:141–149

    Google Scholar 

  6. Meyers MJ, Long SA, Pelc MJ, Wang JL, Bowen SJ, Schweitzer BA, Wilcox MV, McDonald J, Smith SE, Foltin S, Rumsey J, Yang YS, Walker MC, Kamtekar S, Beidler D, Thorarensen A (2011) Discovery of novel spirocyclic inhibitors of fatty acid amide hydrolase (FAAH). Part 2. Discovery of 7-azaspiro[3.5]nonane urea PF-04862853, an orally efficacious inhibitor of fatty acid amide hydrolase (FAAH) for pain. Bioorg Med Chem Lett 21:6545–6553

    Google Scholar 

  7. Tarragó T, Frutos S, Rodriguez-Mias RA, Giralt E (2006) Identification by 19F NMR of traditional Chinese medicinal plants possessing prolyl oligopeptidase inhibitory activity. Chembiochem 7:827–833

    Google Scholar 

  8. Long JZ, Cravatt BF (2011) The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 111:6022–6063

    Google Scholar 

  9. Pope CN, Brimijoin S (2018) Cholinesterases and the fine line between poison and remedy. Biochem Pharmacol 153:205–216. https://doi.org/10.1016/j.bcp.2018.01.044

    Article  Google Scholar 

  10. Pope C, Karanth S, Liu J (2005) Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Environ Toxicol Pharmacol 19:433–446

    Google Scholar 

  11. Pohanka M (2014) Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro. Environ Toxicol Pharmacol 37:455–459

    Google Scholar 

  12. Shukor MY, Tham LG, Halmi MI, Khalid I, Begum G, Syed MA (2013) Development of an inhibitive assay using commercial Electrophorus electricus acetylcholinesterase for heavy metal detection. J Environ Biol 34:967–970

    Google Scholar 

  13. Karlsson E, Mbugua PM, Rodriguez-Ithurralde D (1984) Fasciculins, anticholinesterase toxins from the venom of the green mamba Dendroaspis angusticeps. J Physiol Paris 79:232–240

    Google Scholar 

  14. Ogura H, Kosasa T, Kuriya Y, Yamanishi Y (2000) Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find Exp Clin Pharmacol 22:609–613

    Google Scholar 

  15. Pacheco G, Palacios-Esquivel R, Moss DE (1995) Cholinesterase inhibitors proposed for treating dementia in Alzheimer’s disease: selectivity toward human brain acetylcholinesterase compared with butyrylcholinesterase. J Pharmacol Exp Ther 274:767–770

    Google Scholar 

  16. Zhao Q, Tang XC (2002) Effects of huperzine A on acetylcholinesterase isoforms in vitro: comparison with tacrine, donepezil, rivastigmine and physostigmine. Eur J Pharmacol 455:101–107

    Google Scholar 

  17. Ago Y, Koda K, Takuma K, Matsuda T (2011) Pharmacological aspects of the acetylcholinesterase inhibitor galantamine. J Pharmacol Sci 116:6–17

    Google Scholar 

  18. Corey-Bloom J (2003) Galantamine: a review of its use in Alzheimer’s disease and vascular dementia. Int J Clin Pract 57:219–223

    Google Scholar 

  19. Felgenhauer N, Zilker T, Worek F, Eyer P (2000) Intoxication with huperzine A, a potent anticholinesterase found in the fir club moss. J Toxicol Clin Toxicol 38:803–808

    Google Scholar 

  20. Tang XC, De Sarno P, Sugaya K, Giacobini E (1989) Effect of huperzine A, a new cholinesterase inhibitor, on the central cholinergic system of the rat. J Neurosci Res 24:276–285

    Google Scholar 

  21. Wang R, Tang XC (2005) Neuroprotective effects of huperzine A. A natural cholinesterase inhibitor for the treatment of Alzheimer’s disease. Neurosignals 14:71–82

    Google Scholar 

  22. Wierenga JM, Hollingworth RM (1992) Inhibition of insect acetylcholinesterase by the potato glycoalkaloid alpha-chaconine. Nat Toxins 1:96–99

    Google Scholar 

  23. Min W, Wang W, Chen J, Wang A, Hu Z (2012) On-line immobilized acetylcholinesterase microreactor for screening of inhibitors from natural extracts by capillary electrophoresis. Anal Bioanal Chem 404:2397–2405

    Google Scholar 

  24. Rollinger JM, Hornick A, Langer T, Stuppner H, Prast H (2004) Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products. J Med Chem 47:6248–6254

    Google Scholar 

  25. Vanzolini KL, Vieira LC, Corrêa AG, Cardoso CL, Cass QB (2013) Acetylcholinesterase immobilized capillary reactors-tandem mass spectrometry: an on-flow tool for ligand screening. J Med Chem 56:2038–2044

    Google Scholar 

  26. Chatonnet A, Lockridge O (1989) Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 260:625–634

    Google Scholar 

  27. Masson P, Nachon F, Lockridge O (2010) Structural approach to the aging of phosphylated cholinesterases. Chem Biol Interact 187:157–162

    Google Scholar 

  28. Duysen EG, Li B, Darvesh S, Lockridge O (2007) Sensitivity of butyrylcholinesterase knockout mice to (−)-huperzine A and donepezil suggests humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer’s disease drugs and indicates butyrylcholinesterase function in neurotransmission. Toxicology 233:60–69

    Google Scholar 

  29. Duysen EG, Li B, Lockridge O (2009) The butyrylcholinesterase knockout mouse a research tool in the study of drug sensitivity, bio-distribution, obesity and Alzheimer’s disease. Expert Opin Drug Metab Toxicol 5:523–528

    Google Scholar 

  30. Darvesh S, MacDonald SE, Losier AM, Martin E, Hopkins DA, Armour JA (1998) Cholinesterases in cardiac ganglia and modulation of canine intrinsic cardiac neuronal activity. J Auton Nerv Syst 71:75–84

    Google Scholar 

  31. Darvesh S, Arora RC, Martin E, Magee D, Hopkins DA, Armour JA (2004) Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons. Exp Neurol 188:461–470

    Google Scholar 

  32. Lane RM, Potkin SG, Enz A (2006) Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 9:101–124

    Google Scholar 

  33. Nordberg A, Ballard C, Bullock R, Darreh-Shori T, Somogyi M (2013) A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim Care Companion CNS Disord 15(2). https://doi.org/10.4088/PCC.12r01412

  34. Ohno-Shosaku T, Kano M (2014) Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr Opin Neurobiol 29C:1–8

    Google Scholar 

  35. Di Iorio G, Lupi M, Sarchione F, Matarazzo I, Santacroce R, Petruccelli F, Martinotti G, Di Giannantonio M (2013) The endocannabinoid system: a putative role in neurodegenerative diseases. Int J High Risk Behav Addict 2:100–106

    Google Scholar 

  36. Martins CJ, Genelhu V, Di Marzo V, Francischetti EA (2014) The endocannabinoid system – back to the scene of cardiometabolic risk factors control? Horm Metab Res 46:529–536

    Google Scholar 

  37. Silvestri C, Di Marzo V (2013) The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab 17:475–490

    Google Scholar 

  38. Feledziak M, Lambert DM, Marchand-Brynaert J, Muccioli GG (2012) Inhibitors of the endocannabinoid-degrading enzymes, or how to increase endocannabinoid’s activity by preventing their hydrolysis. Recent Pat CNS Drug Discov 7:49–70

    Google Scholar 

  39. Fu J, Bottegoni G, Sasso O, Bertorelli R, Rocchia W, Masetti M, Guijarro A, Lodola A, Armirotti A, Garau G, Bandiera T, Reggiani A, Mor M, Cavalli A, Piomelli D (2011) A catalytically silent FAAH-1 variant drives anandamide transport in neurons. Nat Neurosci 15:64–69

    Google Scholar 

  40. Petrosino S, Di Marzo V (2010) FAAH and MAGL inhibitors: therapeutic opportunities from regulating endocannabinoid levels. Curr Opin Investig Drugs 11:51–62

    Google Scholar 

  41. Pope C, Mechoulam R, Parsons L (2010) Endocannabinoid signaling in neurotoxicity and neuroprotection. Neurotoxicology 31:562–571

    Google Scholar 

  42. Nomura DK, Casida JE (2011) Activity-based protein profiling of organophosphorus and thiocarbamate pesticides reveals multiple serine hydrolase targets in mouse brain. J Agric Food Chem 59:2808–2815

    Google Scholar 

  43. Quistad GB, Klintenberg R, Caboni P, Liang SN, Casida JE (2006) Monoacylglycerol lipase inhibition by organophosphorus compounds leads to elevation of brain 2-arachidonoylglycerol and the associated hypomotility in mice. Toxicol Appl Pharmacol 211:78–83

    Google Scholar 

  44. Quistad GB, Liang SN, Fisher KJ, Nomura DK, Casida JE (2006) Each lipase has a unique sensitivity profile for organophosphorus inhibitors. Toxicol Sci 91:166–172

    Google Scholar 

  45. Rampa A, Bartolini M, Bisi A, Belluti F, Gobbi S, Andrisano V, Ligresti A, Di Marzo V (2012) The first dual ChE/FAAH inhibitors: new perspectives for Alzheimer’s disease? ACS Med Chem Lett 3(3):182–186

    Google Scholar 

  46. Holas O, Musilek K, Pohanka M, Kuca K (2012) The progress in the cholinesterase quantification methods. Expert Opin Drug Discov 7:1207–1223

    Google Scholar 

  47. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–90

    Google Scholar 

  48. Casida JE, Gulevich AG, Sarpong R, Bunnelle EM (2010) S-Arachidonoyl-2-thioglycerol synthesis and use for fluorimetric and colorimetric assays of monoacylglycerol lipase. Bioorg Med Chem 18:1942–1947

    Google Scholar 

  49. Ulloa NM, Deutsch DG (2010) Assessment of a spectrophotometric assay for monoacylglycerol lipase activity. AAPS J 12:197–201

    Google Scholar 

  50. Cipriano M, Björklund E, Wilson A, Congiu C, Onnis V, Fowler C (2013) Inhibition of fatty acid amide hydrolase and cyclooxygenase by the N-(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen. Eur J Pharmacol 720:383–390

    Google Scholar 

  51. Holt S, Paylor B, Boldrup L, Alajakku K, Vandevoorde S, Sundström A, Cocco M, Onnis V, Fowler C (2007) Inhibition of fatty acid amide hydrolase, a key endocannabinoid metabolizing enzyme, by analogues of ibuprofen and indomethacin. Eur J Pharmacol 565:26–36

    Google Scholar 

  52. Huang L, Su T, Li X (2013) Natural products as sources of new lead compounds for the treatment of Azheimer’s disease. Curr Top Med Chem 15:1864–1868

    Google Scholar 

  53. Käsnänen H, Minkkilä A, Taupila S, Patel J, Lahtela-Kakkonen M, Saario S, Nevalainen T, Poso A (2013) 1,3,4-Oxadiazol-2-ones as fatty-acid amide hydrolase and monoacylglycerol lipase inhibitors: synthesis, in vitro evaluation and insight into potency and selectivity determinants by molecular modeling. Eur J Pharm Sci 49:423–433

    Google Scholar 

  54. Knaak J, Dary C, Power F, Thompson C, Blancato J (2004) Physiochemical and biological data for the development of predictive organophosphorus pesticide QSARs and PBPK/PD models for human risk assessment. Crit Rev Toxicol 34:143–207

    Google Scholar 

  55. Smulders C, Bueters T, Van Kleef R, Viverberg H (2003) Selective effects of carbamate pesticides on rat neuronal nicotinic acetylcholine receptors and rat brain acetylcholinesterase. Toxicol Appl Pharmacol 193:139–146

    Google Scholar 

  56. Sebaugh J (2011) Guidelines for accurate EC50/IC50 estimation. Pharm Stat 10:128–134

    Google Scholar 

  57. DeLean A, Munson P, Rodbard D (1978) Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Phys 235:E97–E102

    Google Scholar 

  58. Mortensen S, Brimijoin S, Hooper M, Padilla S (1998) Comparison of the in vitro sensitivity of rat acetylcholinesterase to chlorpyrifos oxon: what do tissue IC50 values represent? Toxicol Appl Pharmacol 148:46–49

    Google Scholar 

  59. Taylor P, Radić Z (1994) The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol 34:281–320

    Google Scholar 

  60. Karlsson M, Contreras J, Tornqvist H, Holm C (1997) cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. J Biol Chem 43:27218–27223

    Google Scholar 

  61. Segel I (1975) Enzyme kinetics. Behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York, NY

    Google Scholar 

  62. Masson P, Schopfer L, Bartels C, Froment M-T, Ribes F, Nachon F, Lockridge O (2002) Substrate activation in acetylchoinesterase induced by low pH or mutation in the π-cation subsite. Biochim Biophys Acta 1594:313–324

    Google Scholar 

  63. Masson P, Goldstein B, Debouzy J-C, Froment M-T, Lockridge O, Schopfer L (2003) Damped pscillatory hysteretic behaviour of butyrylcholinesterase with benzoylcholine as substrate. Eur J Biochem 271:220–234

    Google Scholar 

  64. Masson P, Nachon F, Bartels C, Froment M-T, Ribes F, Matthews C, Lockridge O (2003) High activity of human butyrylcholinesterase at low pH in the presence of excess butyrylthiocholine. Eur J Bochem 270:315–324

    Google Scholar 

  65. Masson P, Lockridge O (2010) Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch Biochem Biophys 494:107–120

    Google Scholar 

  66. Radić Z, Pickering N, Vellom S, Camp S, Taylor P (1993) Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinestersae inhibitors. Biochemist 32:12074–12084

    Google Scholar 

  67. Geerts H, Grossberg G (2006) Pharmacology of acetylcholinesterase inhibitors and N-methyl-D-aspartate receptors for combination therapy in the treatment of Alzheimer’s disease. J Clin Pharmacol 46:8s–16s

    Google Scholar 

  68. Schneider L, Mangialasche F, Andreases N, Feldman H, Giacobini E, Jones R, Mantua V, Mecocci P, Pani L, Winblad B, Kivipelto M (2014) Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984-2014. J Intern Med 275:251–283

    Google Scholar 

  69. Pacher P, Bátkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462

    Google Scholar 

  70. Galli A, Mori F, Benini L, Cacciarelli N (1994) Acetylcholinesterase protection and the anti-diisopropylfluorophosphate efficacy of E2020. Eur J Pharmacol 270:183–193

    Google Scholar 

  71. Nochi S, Asakawa N, Saro T (1995) Kinetic study on the inhibition of acetylcholinesterase by 1-benzyl-4-[(5,6-diemthoxy-1-indanon)-2-yl]methylpeperidine hydrochloride (E2020). Biol Pharm Bull 18:1145–1147

    Google Scholar 

  72. Kryger G, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure 7:297–307

    Google Scholar 

  73. Hohmann A, Suplita R, Bolton N, Neely M, Fegley D, Mangieri R, Krey J, Walker M, Holmes P, Crystal J, Durnati A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–1112

    Google Scholar 

  74. King A, Duranti A, Tontini A, Rivara S, Rosengarth A, Clapper J, Astarita G, Geaga J, Luecke H, Mor M, Tarzia G, Piomelli D (2007) URB602 inhibits monoacylglycerol lipase and selectively blocks 2-arachidonoylglycerol degradation in intact brain slices. Chem Biol 14:1357–1365

    Google Scholar 

  75. Makara J, Mor M, Fegly D, Szabo S, Kathuria S, Astarita G, Duranti A, Tontini A, Tarzia G, Rivara S, Freund T, Piomelli D (2005) Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nat Neurosci 8:1139–1141

    Google Scholar 

  76. Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55:170–171

    Google Scholar 

  77. Dixon M (1972) The graphical determination of Km and Ki. Biochem J 129:197–202

    Google Scholar 

  78. Estevez J, Vilanova E (2009) Model equations for the kinetics of covalent irreversible enzyme inhibition and spontaneous reactivation: esterases and organophosphorus compounds. Crit Rev Toxicol 39:427–448

    Google Scholar 

  79. Main A (1964) Affinity and phosphorylation constants for the inhibition of esterases by organophosphates. Science 144:992–993

    Google Scholar 

  80. Kardos S, Sultatos L (2000) Interactions of the organophosphates paraoxon and methyl paraoxon with mouse brain acetylcholinesterase. Toxicol Sci 58:118–126

    Google Scholar 

  81. Kaushik R, Rosenfeld C, Sultatos L (2007) Concentration-dependent interactons of the organophosphates chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase. Toxicol Appl Pharmacol 221:243–250

    Google Scholar 

  82. Rosenfeld C, Sultatos L (2006) Concentration-dependent kinetics of acetylcholinesterase inhibition by the organophosphate paraoxon. Toxicol Sci 90:460–469

    Google Scholar 

  83. Aldridge W, Reiner E (1972) Enzyme inhibitors as substrates. Front Biol 26:1–283

    Google Scholar 

  84. Maxwell D, Brecht K, Sweeney R (2013) A common mechanism for resistance to oxime reactivation of acetylcholinesterase inhibited by organophosphorus compounds. Chem Biol Interact 203:72–76

    Google Scholar 

  85. Su C-T, Wang P-H, Liu R-F, Shih J-H, Ma C, Lin C-H, Liu C-Y, Wu M-T (1986) Kinetic studies and structure-activity relationships of bispyridinium oximes as reactivators of acetylcholinesterase inhibited by organophosphorus compounds. Fundam Appl Toxicol 6:506–514

    Google Scholar 

  86. Wang E, Braid P (1966) Oxime reactivation of diethylphosphoryl human serum cholinesterase. J Biol Chem 242:2683–2687

    Google Scholar 

  87. Worek F, Diepold C, Eyer P (1999) Dimethylphophorylated-inhibited human cholinesterases: inhibition, reactivation, and aging kinetics. Arch Toxicol 73:7–14

    Google Scholar 

  88. Sanson B, Nachon F, Colletier J-P, Froment M-T, Toker L, Greenblatt H, Sussman J, Ashani Y, Masson P, Silman I, Weik M (2009) Crystallographic snapshots of nonaged and aged conjugates of soman with acetylcholinesterase, and of a ternary complex of the aged conjugate with pralidoxime. J Med Chem 52:7593–7603

    Google Scholar 

  89. Kraut D, Goff H, Pai R, Hosea N, Silman I, Sussman J, Taylor P, Voet J (2000) Inactivation studies of acetylcholinesterase with phenylmethylsulfonyl fluoride. Mol Pharmacol 57:1243–1248

    Google Scholar 

  90. Walsh C (1979) Enzymatic reaction mechanisms. W.H. Freemann and Company, San Francisco, CA

    Google Scholar 

  91. Richarson RJ, Worden RM, Wijeyesakere SJ, Hein ND, Fink JK, Makhaeva GF (2015) Neuropathy target esterase as a biomarker and biosensor of delayed neuropathic agents. In: Gupta RC (ed) Handbook of toxicology of chemical warfare agents, 2nd edn. Academic Press/Elsevier, Amsterdam, pp 935–952

    Google Scholar 

  92. Main A, Dauterman W (1963) Determination of the bimolecular rate constant for the reaction between organophosphorus inhibitors and esterses in the presence of substrate. Nature 198:551–553

    Google Scholar 

  93. Hart G, O’Brien R (1973) Recording spectrophotometric method for determination of dissociation and phosphorylation constants for the inhibition of acetylcholinesterase by organophosphates in the presence of substrate. Biochemist 12:2940–2945

    Google Scholar 

  94. Hart G, O’Brien R (1974) Stopped-flow studies of the inhibition of acetylcholiensterase by organophosphates in the presence of substrate. Pestic Biochem Physiol 4:239–244

    Google Scholar 

  95. Gray P, Duggleby R (1989) Analysis of kinetic data for irreversible enzyme inhibition. Biochem J 257:419–424

    Google Scholar 

  96. Tsou C (1965) Kinetics of irreversible modification of enzyme activity. I. The effect of substrate on the rate of binding between an enzyme and a modifier. Acta Biochim Biophys Sin 5:398–408

    Google Scholar 

  97. Tsou C (1965) Kinetics of irreversible modification of enzyme activity. II. The substrate reaction during the course of modification. Acta Biochim Biophys Sin 5:408–417

    Google Scholar 

  98. Liu W, Tsou C (1986) Determination of rate constants for the irreversible inhibition of acetylcholine esterase by continuously monitoring the substrate reaction in the presence of inhibitor. Biochim Biophys Acta 870:185–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carey Pope .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pope, C., Hester, K., Sultatos, L. (2018). In Vitro Evaluation of Serine Hydrolase Inhibitors. In: Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1007/7653_2018_11

Download citation

  • DOI: https://doi.org/10.1007/7653_2018_11

  • Published:

  • Publisher Name: Humana Press

Publish with us

Policies and ethics