Skip to main content

High-Throughput Screens for Embryonic Stem Cells: Stress-Forced Potency-Stemness Loss Enables Toxicological Assays

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Embryonic stem cells (ESCs) respond to the majority of toxicological stresses by growing more slowly, and a subpopulation of cells loses all of a subset of nuclear potency/stemness factors. Slowed growth and potency factor loss occur despite culture of ESCs under conditions that favor proliferation and potency maintenance. Stemness/potency factor loss enables the stem cells to differentiate to create essential first lineage functions. Increase in the fraction of stem cells with potency loss and differentiation increase, in response to diminished population growth, is called compensatory differentiation since increased differentiation compensates for diminished population growth.

To take advantage of compensatory differentiation where the potency marker Rex1 undergoes permanent stress-induced loss (Slater et al., Stem Cells Dev 23:3049–3064, 2014), a high throughput screen (HTS1 ESC) has been created in ESCs. Using low-stress lentivirus infection and low-stress FACS isolation, ESC lines were created that are transgenic for gene constructs that use either or both Rex1 potency factor promoter to drive red fluorescence protein (Rex1-RFP) and/or Oct4 potency factor promoter to drive green fluorescent (Oct4-GFP) (Li et al., Stem Cells Dev 25:320–328, 2016). Four independent assays showed that control hyperosmotic stress caused Rex1-RFP to decrease. These assays were immunofluorescence, microplate reader, flow cytometry, and Western blot. In addition, Hoechst was used to assay cell number at the start and end of treatment in order to quantitate growth rate. Since potency factor loss enables differentiation increase then stress-forced differentiation should compensate for diminished stem cell population size. Stress dose-dependent induction of decreased Rex1-RFP was similar to, and corroborated, by dose-dependent loss of endogenous Rex1 protein. This assay shows promise in reporting toxicological stresses.

Potency loss using Rex1-RFP has been quantitated and at a nonmorbid stress dose approaches a 20 % increase over unstressed ESCs. The quantitation of the gain of differentiation in subpopulation size is underway [Li et al., Development (manuscript in preparation)], and hypothetically is within the 20 % of cells with complete (e.g., to the level of non-transgenic parental ESCs) Rex1-RFP loss. Four days after fertilization the ESC lineage arises in the blastocyst stage embryo. At the same time the distinct placental trophoblast stem cell lineage (TSC) also arise and these cells undergo a 50 % induction of giant cell differentiation as measured by morphology, and gain of first lineage differentiated markers. For both ESC and TSC, stress-forced potency loss and differentiation increase occurs despite culture conditions that should maintain proliferation and potency. Thus these assays measure stem cells depletion due to stress forced growth and potency decrease, and differentiation increase. Production of a TSC HTS is important as this stress-forced differentiation is larger than ESC effects and is linked to events that are known to lead to miscarriage.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Puscheck EE, Awonuga AO, Yang Y, Jiang Z, Rappolee DA (2015) Molecular biology of the stress response in the early embryo and its stem cells. Adv Exp Med Biol 843:77–128

    Article  CAS  PubMed  Google Scholar 

  2. Watkins AJ, Lucas ES, Marfy-Smith S, Bates N, Kimber SJ, Fleming TP (2015) Maternal nutrition modifies trophoblast giant cell phenotype and fetal growth in mice. Reproduction 149:563–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Canfield RE, O’Connor JF, Birken S, Krichevsky A, Wilcox AJ (1987) Development of an assay for a biomarker of pregnancy and early fetal loss. Environ Health Perspect 74:57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wilcox AJ, Weinberg CR, O’Connor JF et al (1988) Incidence of early loss of pregnancy. N Engl J Med 319:189–194

    Article  CAS  PubMed  Google Scholar 

  5. Rappolee DA (1999) It’s not just baby’s babble/Babel: recent progress in understanding the language of early mammalian development: a minireview. Mol Reprod Dev 52:234–240

    Article  CAS  PubMed  Google Scholar 

  6. Sun C, Velazquez MA, Marfy-Smith S et al (2014) Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition. Development 141:1140–1150

    Article  CAS  PubMed  Google Scholar 

  7. Slater JA, Zhou S, Puscheck EE, Rappolee DA (2014) Stress-induced enzyme activation primes murine embryonic stem cells to differentiate toward the first extraembryonic lineage. Stem Cells Dev 23:3049–3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie Y, Zhou S, Jiang Z et al (2014) Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency. Stem Cell Res 13:478–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Awonuga AO, Zhong W, Abdallah ME et al (2011) Eomesodermin, HAND1, and CSH1 proteins are induced by cellular stress in a stress-activated protein kinase-dependent manner. Mol Reprod Dev 78:519–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhong W, Xie Y, Abdallah M et al (2010) Cellular stress causes reversible, PRKAA1/2-, and proteasome-dependent ID2 protein loss in trophoblast stem cells. Reproduction 140:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu J, Xu W, Sun T et al (2009) Hyperosmolar stress induces global mRNA responses in placental trophoblast stem cells that emulate early post-implantation differentiation. Placenta 30:66–73

    Article  PubMed  Google Scholar 

  12. Rappolee DA, Xie Y, Slater JA, Zhou S, Puscheck EE (2012) Toxic stress prioritizes and imbalances stem cell differentiation: implications for new biomarkers and in vitro toxicology tests. Syst Biol Reprod Med 58:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rappolee DA, Awonuga AO, Puscheck EE, Zhou S, Xie Y (2010) Benzopyrene and experimental stressors cause compensatory differentiation in placental trophoblast stem cells. Syst Biol Reprod Med 56:168–183

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y, Arenas-Hernandez M, Gomez-Lopez N et al (2016) Hypoxic stress forces irreversible differentiation of a majority of mouse trophoblast stem cells to a giant cell fate despite FGF4. Biol Reprod (Accepted)

    Google Scholar 

  15. Xie Y, Awonuga A, Liu J, Rings E, Puscheck EE, Rappolee DA (2013) Stress induces AMPK-dependent loss of potency factors Id2 and Cdx2 in early embryos and stem cells [corrected]. Stem Cells Dev 22:1564–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie Y, Abdallah ME, Awonuga AO, Slater JA, Puscheck EE, Rappolee DA (2010) Benzo(a)pyrene causes PRKAA1/2-dependent ID2 loss in trophoblast stem cells. Mol Reprod Dev 77:533–539

    Article  CAS  PubMed  Google Scholar 

  17. Zhong W, Xie Y, Wang Y et al (2007) Use of hyperosmolar stress to measure stress-activated protein kinase activation and function in human HTR cells and mouse trophoblast stem cells. Reprod Sci 14:534–547

    Article  CAS  PubMed  Google Scholar 

  18. Li Q, Gomez-Lopez N, Drewlo S et al (2016) Development and validation of a Rex1-RFP potency activity reporter assay that quantifies stress-forced potency loss in mouse embryonic stem cells. Stem Cells Dev 25:320–328

    Article  CAS  PubMed  Google Scholar 

  19. Genschow E, Spielmann H, Scholz G et al (2002) The ECVAM international validation study on in vitro embryotoxicity tests: results of the definitive phase and evaluation of prediction models. European Centre for the Validation of Alternative Methods. Altern Lab Anim 30:151–176

    CAS  PubMed  Google Scholar 

  20. Chandler KJ, Barrier M, Jeffay S et al (2011) Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay. PLoS One 6, e18540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Dartel DA, Pennings JL, van Schooten FJ, Piersma AH (2010) Transcriptomics-based identification of developmental toxicants through their interference with cardiomyocyte differentiation of embryonic stem cells. Toxicol Appl Pharmacol 243:420–428

    Article  PubMed  Google Scholar 

  22. Theunissen PT, Pennings JL, van Dartel DA, Robinson JF, Kleinjans JC, Piersma AH (2013) Complementary detection of embryotoxic properties of substances in the neural and cardiac embryonic stem cell tests. Toxicol Sci 132:118–130

    Article  CAS  PubMed  Google Scholar 

  23. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45

    CAS  PubMed  Google Scholar 

  24. Hosler BA, Rogers MB, Kozak CA, Gudas LJ (1993) An octamer motif contributes to the expression of the retinoic acid-regulated zinc finger gene Rex-1 (Zfp-42) in F9 teratocarcinoma cells. Mol Cell Biol 13:2919–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okumura-Nakanishi S, Saito M, Niwa H, Ishikawa F (2005) Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem 280:5307–5317

    Article  CAS  PubMed  Google Scholar 

  26. Huang R, Xia M, Sakamuru S et al (2016) Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat Commun 7:10425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ho PI, Yue K, Pandey P et al (2013) Reporter enzyme inhibitor study to aid assembly of orthogonal reporter gene assays. ACS Chem Biol 8:1009–1017

    Article  CAS  PubMed  Google Scholar 

  28. Scholz G, Pohl I, Genschow E, Klemm M, Spielmann H (1999) Embryotoxicity screening using embryonic stem cells in vitro: correlation to in vivo teratogenicity. Cells Tissues Organs 165:203–211

    Article  CAS  PubMed  Google Scholar 

  29. Spielmann H, Genschow E, Scholz G et al (2001) Preliminary results of the ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 29:301–303

    CAS  PubMed  Google Scholar 

  30. Artus J, Kang M, Cohen-Tannoudji M, Hadjantonakis AK (2013) PDGF signaling is required for primitive endoderm cell survival in the inner cell mass of the mouse blastocyst. Stem Cells 31:1932–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Artus J, Piliszek A, Hadjantonakis AK (2011) The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev Biol 350:393–404

    Article  CAS  PubMed  Google Scholar 

  32. Artus J, Panthier JJ, Hadjantonakis AK (2010) A role for PDGF signaling in expansion of the extra-embryonic endoderm lineage of the mouse blastocyst. Development 137:3361–3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Genschow E, Scholz G, Brown N et al (2000) Development of prediction models for three in vitro embryotoxicity tests in an ECVAM validation study. In Vitr Mol Toxicol 13:51–66

    CAS  PubMed  Google Scholar 

  34. Xie Y, Zhong W, Wang Y et al (2007) Using hyperosmolar stress to measure biologic and stress-activated protein kinase responses in preimplantation embryos. Mol Hum Reprod 13:473–481

    Article  CAS  PubMed  Google Scholar 

  35. Li Q, Louden E, Dai J et al (2016) Stress forces first lineage differentiation of mouse ESCs, validation of a high throughput screen for toxicant stress. Development (manuscript in preparation)

    Google Scholar 

  36. West PR, Weir AM, Smith AM, Donley EL, Cezar GG (2010) Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 247:18–27

    Article  CAS  PubMed  Google Scholar 

  37. Kleinstreuer NC, Smith AM, West PR et al (2011) Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 257(1):111–21

    Article  CAS  PubMed  Google Scholar 

  38. Bolnick A, Abdulhasan M, Kilburn B et al (2016) Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos. J Assist Reprod Genet 33:1027–1039

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bolnick A, Abdulhasan, M, Kilburn B et al (2016) 2-cell embryos are more sensitive than blastocysts to AMPK-dependent suppression of anabolism and potency/stemness by commonly used drugs, a diet supplement and stress. J Assist Reprod Genet (in preparation)

    Google Scholar 

  40. Genschow E, Spielmann H, Scholz G et al (2004) Validation of the embryonic stem cell test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 32:209–244

    CAS  PubMed  Google Scholar 

  41. Toyooka Y, Shimosato D, Murakami K, Takahashi K, Niwa H (2008) Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135:909–918

    Article  CAS  PubMed  Google Scholar 

  42. Corish P, Tyler-Smith C (1999) Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12:1035–1040

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Rappolee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Li, Q., Yang, Y., Louden, E., Puscheck, E.E., Rappolee, D.A. (2016). High-Throughput Screens for Embryonic Stem Cells: Stress-Forced Potency-Stemness Loss Enables Toxicological Assays. In: Faqi, A. (eds) Developmental and Reproductive Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2016_66

Download citation

  • DOI: https://doi.org/10.1007/7653_2016_66

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7206-7

  • Online ISBN: 978-1-4939-7208-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics