Skip to main content

Cyclic-RGDfK-Directed Docetaxel Loaded Nanomicelles for Angiogenic Tumor Targeting

  • Protocol
  • First Online:
Integrin Targeting Systems for Tumor Diagnosis and Therapy

Abstract

Targeting angiogenesis is a strategy to better control tumor growth and metastasis. αvβ3 is an integrin, involved in the regulation of angiogenesis and overexpressed in angiogenic endothelial cells and various cancers including breast, prostate, pancreatic, and brain cancers. cRGDfK peptide has high specificity towards αvβ3 integrin receptors. Docetaxel (DTX) is a broad spectrum anticancer drug, widely used to treat breast, ovarian, prostate, non-small-cell lung, gastric, and neck cancers. Its clinical application is limited owing to its poor aqueous solubility, low oral bioavailability, and nonspecific cytotoxicity. The nanocarriers help to overcome these limitations and further can be surface-modified to conjugate ligand to achieve selective delivery to tumor. d-α-Tocopheryl polyethylene glycol succinate (TPGS) is a water soluble derivative of natural d-α-tocopherol (Vit E). TPGS-based engineered nanocarrier systems have been shown to transport and deliver anticancer drugs more efficiently than the pristine drugs. Herein, we attempt to improve the therapeutic potential of DTX and to target the integrin receptor overexpressing angiogenic tumors, by encapsulating the DTX in nanomicelles and conjugating to cRGDfK peptide for tumor targeting. These nanomicelles are characterized by various analytical techniques and their potential of selective targeting is also evaluated. In the present chapter, we provide the general procedure used in this study: (1) synthesis and characterization of succinoyl-TPGS, (2) preparation and characterization of docetaxel loaded TPSA nanomicelles (DNM), (3) bioconjugation, quantification, and characterization of cRGDfK peptide to DNM (PDNM), (4) in vitro evaluation of cytotoxicity of the nanoparticles, (5) antiangiogenic activity, and (6) stability studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhaofei L, Fan W, Xiaoyuan C (2008) Integrin αvβ3-targeted cancer therapy. Drug Dev Res 69:329–339

    Article  Google Scholar 

  2. Thobe MN, Gurusamy D, Pathrose P, Waltz SE (2010) The Ron receptor tyrosine kinase positively regulates angiogenic chemokine production in prostate cancer cells. Oncogene 29:214–226

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet P, Jain RK (2000) Review: angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  4. Kubota Y (2012) Tumour angiogenesis and anti-angiogenic therapy. Keio J Med 61:47–56

    Article  CAS  PubMed  Google Scholar 

  5. Danhier F, Le Breton A, Preat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9:2961–2973

    Article  CAS  PubMed  Google Scholar 

  6. Zhang L, Zhang N (2013) How nanotechnology can enhance docetaxel therapy. Int J Nanomedicine 8:2927–2941

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    Article  CAS  PubMed  Google Scholar 

  8. Baker J, Ajani J, Scotte F, Winther D, Martin M, Aapro MS et al (2009) Docetaxel-related side effects and their management. Eur J Oncol Nurs 13:49–59

    Article  PubMed  Google Scholar 

  9. Roy A, Murakami M, Ernsting MJ, Hoang B, Undzys E, Li SD (2014) Carboxymethylcellulose-based and docetaxel-loaded nanoparticles circumvent P-glycoprotein-mediated multidrug resistance. Mol Pharm 11:2592–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kulhari H, Pooja D, Shrivastava S, Naidu VGM, Sistla R (2014) Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel. Colloids Surf B Biointerfaces 117:166–173

    Article  CAS  PubMed  Google Scholar 

  11. Pooja D, Kulhari H, Tunki L, Chinde S, Kuncha M, Grover P, Rachamalla SS, Sistla R (2015) Nanomedicines for targeted delivery of etoposide to non-small cell lung cancer using transferrin functionalized nanoparticles. RSC Adv 5:49122–49131

    Article  CAS  Google Scholar 

  12. Sultana S, Khan MR, Kumar M, Kumar S, Ali M (2013) Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J Drug Target 21:107–125

    Article  CAS  PubMed  Google Scholar 

  13. Farrell D, Ptak K, Panaro NJ, Grodzinski P (2011) Nanotechnology-based cancer therapeutics-promise and challenge-lessons learned through the NCI Alliance for nanotechnology in cancer. Pharm Res 28:273–278

    Article  CAS  PubMed  Google Scholar 

  14. Kulhari H, Deep Pooja Singh MK, Chauhan AS (2013) Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation. Drug Dev Ind Pharm 41(2):232–238

    Article  PubMed  Google Scholar 

  15. Feng L, Mumper RJA (2013) Critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett 334:157–175

    Article  CAS  PubMed  Google Scholar 

  16. Guo Y, Luo J, Tan S, Otieno BO, Zhang Z (2013) The applications of Vitamin E TPGS in drug delivery. Eur J Pharm Sci 49:175–186

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Tan S, Feng SS (2012) Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 33:4889–4906

    Article  CAS  PubMed  Google Scholar 

  18. Mi Y, Zhao J, Feng SS (2012) Vitamin E TPGS prodrug micelles for hydrophilic drug delivery with neuroprotective effects. Int J Pharm 438:98–106

    Article  CAS  PubMed  Google Scholar 

  19. Pooja D, Kulhari H, Singh MK, Mukherjee S, Rachamalla SS, Sistla R (2014) Dendrimer-TPGS mixed micelles for enhanced solubility and cellular toxicity of taxanes. Colloids Surf B Biointerfaces 121:461–468

    Article  CAS  PubMed  Google Scholar 

  20. Duhem N, Rolland J, Riva R, Guillet P, Schumers JM, Jérome C, Gohy JF, Préat V (2011) Tocol modified glycol chitosan for the oral delivery of poorly soluble drugs. Int J Pharm 423:452–460

    Article  PubMed  Google Scholar 

  21. Schmitt A, Schmitt J, Münch G, Gasic-Milencovic J (2005) Characterization of advanced glycation end products for biochemical studies: side chain modifications and fluorescence characteristics. Anal Biochem 15:201–215

    Article  Google Scholar 

  22. VanMeerloo J, Kaspers GJL, Cloos J (2011) Cell sensitivity assays: the MTT assay. Cancer cell culture. Springer, New York, pp 237–245

    Book  Google Scholar 

  23. Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X (2013) Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep 3:2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oommen S, Anto RJ, Srinivas G, Karunagaran D (2004) Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. Eur J Pharmacol 485(1):97–103

    Article  CAS  PubMed  Google Scholar 

  25. Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR (2011) Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp 50:2597

    Google Scholar 

  26. Nagababu P, Barui AK, Bathini T (2015) Anti-angiogenic activity of mononuclear copper(II) polypyridyl complexes for the treatment of cancers. J Med Chem 58(13):5226–5241

    Article  CAS  PubMed  Google Scholar 

  27. Barui AK, Veeriah V, Mukherjee S et al (2012) Zinc oxide nanoflowers make new blood vessels. Nanoscale 4:7861–7869

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

H.K. and T.S. Reddy are thankful to the Director, IICT-RMIT Research Centre for providing the Junior Research Fellowships. D.P. and A.K.B. acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi and the University Grants Commission (UGC), New Delhi, respectively, for awarding Senior Research Fellowships. This work is partially supported by a CSIR grant under project Advanced Drug Delivery Systems (CSC 0302). D.J.A. is an Australian Research Council (ARC) Australian Professorial Fellow.

Declaration: The work described in this book chapter has been published as Kulhari et al., Cyclic-RGDfK peptide conjugated succinoyl-TPGS nanomicelles for targeted delivery of docetaxel to integrin receptor overexpressing angiogenic tumors. Nanomedicine. 2015;11(6):1511–1520. The work is reprinted after permission from Elsevier under license number 3671851307186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishna Sistla Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kulhari, H. et al. (2015). Cyclic-RGDfK-Directed Docetaxel Loaded Nanomicelles for Angiogenic Tumor Targeting. In: Patsenker, E. (eds) Integrin Targeting Systems for Tumor Diagnosis and Therapy. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2015_63

Download citation

  • DOI: https://doi.org/10.1007/7653_2015_63

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7443-6

  • Online ISBN: 978-1-4939-7445-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics