Integrin Targeting Using RGD-Based Peptide Amphiphiles

Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Active targeting has been explored for improving accumulation of drugs at the tumor site via specific ligand receptor interactions. The tripeptide “Arg-Gly-Asp” or RGD has shown tremendous potential as a targeting ligand in improving the delivery of drugs and diagnostic agents to integrin-overexpressing tumors. The different integrin-based targeting drug delivery systems studied include polymeric nanoparticles, polymeric micelles, and dendrimers, most of which are prepared by decorating RGD ligand on the surface of the drug delivery system. Our group previously reported the potential of peptide-based amphiphiles for integrin targeting of hydrophobic drugs. These amphiphiles are built by solid-phase peptide synthesis and contain RGD as the hydrophilic head group (also as a targeting ligand), a fatty acid as lipid tail and multiple units of hydrophilic linker. The focus of this chapter is to outline methodologies used for the synthesis, characterization, and evaluation of these low-molecular-weight RGD-based micellar carriers for delivery of hydrophobic anticancer agents. The experimental details and factors to be considered for optimal methods are discussed.

Keywords

Targeting RGD Peptide amphiphile Micelles 

References

  1. 1.
    Byrne J, Betancourt T, Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626CrossRefPubMedGoogle Scholar
  2. 2.
    Ramsay A, Marshall J, Hart I (2007) Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev 26(3-4):567–578CrossRefPubMedGoogle Scholar
  3. 3.
    Xiong J, Stehle T, Zhang R et al (2002) Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg-Gly-Asp ligand. Science 296(5565):151–155CrossRefPubMedGoogle Scholar
  4. 4.
    Allman R, Cowburn P, Mason M (2000) In vitro and in vivo effects of a cyclic peptide with affinity for the αvβ3 integrin in human melanoma cells. Eur J Cancer 36(3):410–422CrossRefPubMedGoogle Scholar
  5. 5.
    Reardon D, Nabors L, Stupp R et al (2008) Cilengitide: an integrin-targeting arginine–glycine–aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin Investig Drug 17(8):1225–1235CrossRefGoogle Scholar
  6. 6.
    Mas-Moruno C, Rechenmacher F, Kessler H (2010) Cilengitide: the first anti-angiogenic small molecule drug candidate. Design, synthesis and clinical evaluation. Anticancer Agents Med Chem 10(10):753–768CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hartgerink J, Beniash E, Stupp S (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A 99(8):5133–5138CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang Y, Wang X, Zhang Y et al (2009) RGD modified polymeric micelles as potential carriers for targeted delivery to integrin overexpressing tumor vasculature and tumor cells. J Drug Target 17(6):459–467CrossRefPubMedGoogle Scholar
  9. 9.
    Danhier F, Vroman B, Lecouturier N et al (2009) Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Control Release 140(2):166–173CrossRefGoogle Scholar
  10. 10.
    Kotamraj P, Russu W, Jasti B et al (2011) Novel integrin-targeted binding triggered drug delivery system for methotrexate. Pharm Res 28(12):3208–3219CrossRefPubMedGoogle Scholar
  11. 11.
    Holig P, Bach M, Volkel T et al (2004) Novel RGD lipopeptides for the targeting of liposomes to integrin expressing endothelial and melanoma cells. Protein Eng Des Sel 17(5):433–441CrossRefPubMedGoogle Scholar
  12. 12.
    Shukla R, Thomas T, Peters J (2005) Tumor angiogenic vasculature targeting with PAMAM dendrimer–RGD conjugates. Chem Commun (Camb) 46:5739–5741CrossRefGoogle Scholar
  13. 13.
    Javali N, Raj A, Saraf P et al (2012) Fatty acid -RGD peptide amphiphile micelles as potential paclitaxel delivery carriers to αvβ3 integrin overexpressing tumors. Pharm Res 29(12):3347–3361CrossRefPubMedGoogle Scholar
  14. 14.
    Raj A, Saraf P, Javali N et al (2014) Binding and uptake of novel RGD micelles to the αvβ3 integrin receptor for targeted drug delivery. J Drug Target 22(6):518–527CrossRefGoogle Scholar
  15. 15.
    Saraf P, Li X, Wrischnik L et al (2015) In vitro and in vivo efficacy of self-assembling RGD peptide amphiphiles for targeted delivery of paclitaxel. Pharm Res 32(9):3087–3101CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Domínguez A, Fernández A, González N et al (1997) Determination of critical micelle concentration of some surfactants by three techniques. J Chem Educ 74(10):1227–1231CrossRefGoogle Scholar
  17. 17.
    Ray G, Chakraborty I, Moulik S (2006) Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J Colloid Interface Sci 294(1):248–254CrossRefGoogle Scholar
  18. 18.
    Leng Y (2009) Materials characterization: introduction to microscopic and spectroscopic methods. Wiley, New York, NY. ISBN 978-0-470-82299-9Google Scholar
  19. 19.
    Han S, Cao S, Wang Y et al (2011) Self-Assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Chemistry 17(46):13095–13102CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lu J, Owen S, Stoichet M (2011) Stability of self-assembled polymeric micelles in serum. Macromolecules 44(15):6002–6008CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen H, Kim S, Wang S et al (2008) Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Förster resonance energy transfer imaging. Proc Natl Acad Sci U S A 105(18):6596–6601CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dong H, Dube N, Shu J et al (2012) Long circulating 15 nm micelles based on amphiphilic 3-Helix Peptide-PEG Conjugates. ACS Nano 6(6):5320–5329CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Moerke N (2009) Fluorescence polarization (FP) assays for monitoring peptide-protein or nucleic acid–protein binding. Curr Protoc Chem Biol 1(1):1–15PubMedGoogle Scholar
  24. 24.
    Wang W, Wu Q, Pasuelo M et al (2005) Probing for integrin αvβ3 binding of RGD peptides using fluorescence polarization. Bioconjug Chem 16(3):729–734CrossRefPubMedGoogle Scholar
  25. 25.
    Welsh D, Smith D (2011) Comparing dendritic and self-assembly strategies to multivalency-RGD peptide-integrin interactions. Org Biomol Chem 9(13):4795–4801CrossRefPubMedGoogle Scholar
  26. 26.
    Vorup-Jensen T (2012) Surface plasmon resonance biosensing in studies of the binding between β2 integrin I domains and their ligands. Methods Mol Biol 757:55–71CrossRefPubMedGoogle Scholar
  27. 27.
    Price R, Jerome W (eds) (2011) Basic confocal microscopy. Springer, New York, NYGoogle Scholar
  28. 28.
    Vega-Avila E, Pugsley M (2011) An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc 54:10–14PubMedGoogle Scholar
  29. 29.
    Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1(3):1112–1116CrossRefPubMedGoogle Scholar
  30. 30.
    Sylvester P (2011) Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol Biol 716:157–168CrossRefPubMedGoogle Scholar
  31. 31.
    Amblard M, Fehrentz J, Martinez J et al (2006) Methods and protocols of modern solid phase peptide synthesis. Mol Biotechnol 33(3):239–254CrossRefPubMedGoogle Scholar
  32. 32.
    Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2(12):3247–3256CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health SciencesUniversity of the PacificStocktonUSA

Personalised recommendations