Skip to main content

Integrin αvβ3-Targeted Optical Imaging with Metal Oxide Nanomaterials: Focusing on Zinc Oxide

  • Protocol
  • First Online:
  • 402 Accesses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Integrin αvβ3 is one of the most important factors during angiogenesis (i.e., the formation of new vasculature). To fully elucidate its role in different pathological process, a tool which can visualize its distribution profile and/or fluctuation will be of great value. Metal oxide nanomaterials, with unique physical properties and versatile biological applications, can be suitable candidates for this type of application. Among all the metal oxide nanomaterials, zinc oxide (ZnO) has different forms of nanostructures and possesses several distinct advantages including tunable luminescence, good biocompatibility, low cytotoxicity, and versatile chemical reaction capacity with different molecules. Based on all these properties, ZnO nanomaterials can serve as a useful platform especially as an imaging tool for studying integrin αvβ3 in cells. With further optimization, these ZnO nanomaterials can be attractive alternatives for image-guided drug delivery applications via integrin αvβ3-mediated pathways. This chapter provides detailed protocols of how to produce luminescent ZnO nanomaterials (e.g., nanowires or nanoparticles) and use them at the cellular level for optical imaging of integrin αvβ3.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hong H, Chen F, Zhang Y, Cai W (2014) New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 76:2–20

    Article  CAS  PubMed  Google Scholar 

  2. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cox D, Brennan M, Moran N (2010) Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 9:804–820

    Article  CAS  PubMed  Google Scholar 

  4. Cai W, Niu G, Chen X (2008) Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 14:2943–2973

    Article  CAS  PubMed  Google Scholar 

  5. Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(Suppl 2):113s–128s

    Article  CAS  PubMed  Google Scholar 

  6. Hsu AR, Veeravagu A, Cai W, Hou LC, Tse V, Chen X (2007) Integrin alpha v beta 3 antagonists for anti-angiogenic cancer treatment. Recent Pat Anticancer Drug Discov 2:143–158

    CAS  PubMed  Google Scholar 

  7. Doss M, Kolb HC, Zhang JJ, Belanger MJ, Stubbs JB, Stabin MG, Hostetler ED, Alpaugh RK, von Mehren M, Walsh JC, Haka M, Mocharla VP, Yu JQ (2012) Biodistribution and radiation dosimetry of the integrin marker 18F-RGD-K5 determined from whole-body PET/CT in monkeys and humans. J Nucl Med 53:787–795

    Article  PubMed  Google Scholar 

  8. Wan W, Guo N, Pan D, Yu C, Weng Y, Luo S, Ding H, Xu Y, Wang L, Lang L, Xie Q, Yang M, Chen X (2013) First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med 54:691–698

    Article  CAS  PubMed  Google Scholar 

  9. Pysz MA, Gambhir SS, Willmann JK (2010) Molecular imaging: current status and emerging strategies. Clin Radiol 65:500–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gioux S, Choi HS, Frangioni JV (2010) Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 9:237–255

    Article  CAS  PubMed  Google Scholar 

  11. Cao J, Wan S, Tian J, Li S, Deng D, Qian Z, Gu Y (2012) Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis. Contrast Media Mol Imaging 7:390–402

    Article  CAS  PubMed  Google Scholar 

  12. von Wallbrunn A, Holtke C, Zuhlsdorf M, Heindel W, Schafers M, Bremer C (2007) In vivo imaging of integrin alpha v beta 3 expression using fluorescence-mediated tomography. Eur J Nucl Med Mol Imaging 34:745–754

    Article  Google Scholar 

  13. Cai W, Chen K, Li ZB, Gambhir SS, Chen X (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48:1862–1870

    Article  CAS  PubMed  Google Scholar 

  14. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl 44:278–284

    Article  CAS  PubMed  Google Scholar 

  15. Li G, Tang Z (2014) Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective. Nanoscale 6:3995–4011

    Article  CAS  PubMed  Google Scholar 

  16. Mohandas G, Oskolkov N, McMahon MT, Walczak P, Janowski M (2014) Porous tantalum and tantalum oxide nanoparticles for regenerative medicine. Acta Neurobiol Exp (Wars) 74:188–196

    Google Scholar 

  17. Gautier J, Allard-Vannier E, Herve-Aubert K, Souce M, Chourpa I (2013) Design strategies of hybrid metallic nanoparticles for theragnostic applications. Nanotechnology 24:432002

    Article  CAS  PubMed  Google Scholar 

  18. Yen SK, Padmanabhan P, Selvan ST (2013) Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3:986–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao W, Ji L, Li L, Cui G, Xu K, Li P, Tang B (2012) Bifunctional combined Au-Fe(2)O(3) nanoparticles for induction of cancer cell-specific apoptosis and real-time imaging. Biomaterials 33:3710–3718

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Nayak TR, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13:1633–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5:1561–1573

    Article  CAS  PubMed  Google Scholar 

  22. Kumar N, Srivastava AK, Nath R, Gupta BK, Varma GD (2014) Probing the highly efficient room temperature ammonia gas sensing properties of a luminescent ZnO nanowire array prepared via an AAO-assisted template route. Dalton Trans 43:5713–5720

    Article  CAS  PubMed  Google Scholar 

  23. Hong H, Shi J, Yang Y, Zhang Y, Engle JW, Nickles RJ, Wang X, Cai W (2011) Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett 11:3744–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi J, Hong H, Ding Y, Yang Y, Cai W, Wang X (2011) Evolution of zinc oxide nanostructures through kinetics control. J Mater Chem 21:9000–9008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu D, Wu W, Qiu Y, Yang S, Xiao S, Wang QQ, Ding L, Wang J (2008) Surface functionalization of ZnO nanotetrapods with photoactive and electroactive organic monolayers. Langmuir 24:5052–5059

    Article  CAS  PubMed  Google Scholar 

  26. Hong H, Wang F, Zhang Y, Graves SA, Eddine SB, Yang Y, Theuer CP, Nickles RJ, Wang X, Cai W (2015) Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting. ACS Appl Mater Interfaces 7:3373–3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676

    Article  CAS  PubMed  Google Scholar 

  28. Pan ZY, Liang J, Zheng ZZ, Wang HH, Xiong HM (2011) The application of ZnO luminescent nanoparticles in labeling mice. Contrast Media Mol Imaging 6:328–330

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibo Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hong, H., Cai, W. (2015). Integrin αvβ3-Targeted Optical Imaging with Metal Oxide Nanomaterials: Focusing on Zinc Oxide. In: Patsenker, E. (eds) Integrin Targeting Systems for Tumor Diagnosis and Therapy. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2015_60

Download citation

  • DOI: https://doi.org/10.1007/7653_2015_60

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7443-6

  • Online ISBN: 978-1-4939-7445-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics