Integrin-Mediated Targeting of Liposomally Bound siRNAs to Tumor Vasculatures

  • Poulami Majumder
  • Arabinda Chaudhuri
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


The discovery of RNA interference (RNAi) technique gave birth to a promising new therapeutic modality for silencing disease-causing genes. Small interfering RNAs (siRNAs), double stranded RNAs containing ~21–23 nucleotides, are being increasingly exploited in designing potential anticancer therapeutics due to the ease of their syntheses and high target specificities. So far, cationic liposomes mediated siRNA delivery systems appear to be one of the most promising candidates for systemic applications. However, the lack of tumor-specific delivery often poses a major threat to clinical success. To this end, we have developed effective liposomal delivery systems for delivering siRNA selectively via integrin receptors (αβ heterodimeric transmembrane glycoprotein receptors) which are highly upregulated on the endothelial cells of tumor vasculature compared to their expression levels in other quiescent vessels in normal tissues. With a view to exploit RNAi for tumor-specific systemic applications, the present report focuses on the use CDC20siRNAs (cell division cycle homologue 20), a key cell cycle regulator for the completion of mitosis in organisms from yeast to human and overexpressed in several carcinomas. Herein we report on the details of protocols for preparing the α5β1 integrin receptor selective and tumor-vasculature targeting liposomal formulation of pegylated RGDK-lipopeptide that can efficiently and stably encapsulate siRNAs. We show that intravenous administration of the liposomal formulation can lead to significant melanoma (B16F10) tumor growth inhibition in C57BL/6J mice via apoptosis of tumor endothelial cells.


Integrin receptors siRNA Liposomes CDC20 Tumor vasculatures In vivo siRNA delivery Tumor vasculature targeting 



This work was supported by the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi (CSC0302 and BSC0123). P.M. thanks Council of Scientific and Industrial Research, Government of India, New Delhi for her doctoral research fellowship.


  1. 1.
    Fire A, Xu SQ, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefPubMedGoogle Scholar
  2. 2.
    Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296CrossRefPubMedGoogle Scholar
  3. 3.
    Elbashir SM et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498CrossRefPubMedGoogle Scholar
  4. 4.
    Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574CrossRefPubMedGoogle Scholar
  5. 5.
    Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150CrossRefPubMedGoogle Scholar
  6. 6.
    Xu C-f, Wang J (2015) Delivery Systems for siRNA drug development in cancer therapy. Asian J Pharm Sci 1:1–12Google Scholar
  7. 7.
    Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA offtarget effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67CrossRefPubMedGoogle Scholar
  8. 8.
    Schultz N, Marenstein DR, De Angelis DA et al (2011) Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-pathway and reveal microRNA regulation of TGFBR2. Silence 2:1–20CrossRefGoogle Scholar
  9. 9.
    Ozpolat B, Sood AK, Lopez-Berestein G (2014) Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Del Rev 66:110–116CrossRefGoogle Scholar
  10. 10.
    Layzer JM, McCaffrey AP, Tanner AK et al (2004) In vivo activity of nuclease-resistant siRNAs. RNA 10:766–771CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Van de Water FM, Boerman OC, Wouterse AC et al (2006) Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos 34:1393–1397CrossRefPubMedGoogle Scholar
  12. 12.
    Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jiang N, Zhang X, Zheng X, Chen D, Siu K, Wang H, Ichim TE, Quan D, McAlister V, Chen G, Min WP (2012) A novel in vivo siRNA delivery system specifically targeting liver cells for protection of ConA-induced fulminant hepatitis. PLoS One 7:e44138CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Scherr M, Battmer K, Dallmann I, Ganser A, Eder M (2003) Inhibition of GMCSF receptor function by stable RNA interference in a NOD/SCID mouse hematopoietic stem cell transplantation model. Oligonucleotides 13:353–363CrossRefPubMedGoogle Scholar
  15. 15.
    Sakurai Y, Hatakeyama H, Sato Y, Hyodo M, Akita H, Harashima H (2013) Gene silencing via RNAi and siRNA quantification in tumor tissue using MEND, a liposomal siRNA delivery system. Mol Ther 21:1195–1203CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kenny GD, Kamaly N, Kalber TL, Brody LP, Sahuri M, Shamsaei E, Miller AD, Bell JD (2011) Novel multifunctional nanoparticle mediates siRNA tumour delivery, visualization and therapeutic tumour reduction in vivo. J Control Release 149:111–116CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Borel F, Kay MA, Mueller C (2014) Recombinant AAV as a platform for translating the therapeutic potential of RNA interference. Mol Ther 22:692–701CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Khan A, Benboubetra M, Sayyed PZ, Ng KW, Fox S, Beck G, Benter IF, Akhtar S (2004) Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. J Drug Target 12:393–404CrossRefPubMedGoogle Scholar
  21. 21.
    Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N et al (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26:561–569CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen K, Chen X (2011) Integrin targeted delivery of chemotherapeutics. Theranostics 1:189–200CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E (2010) Co-administration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328:1031–1035CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci U S A 106:16157–16162CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, Hanahan D, Mattrey RF, Ruoslahti E (2009) Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16:510–520CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Samanta S, Sistla R, Chaudhuri A (2010) The use of RGDGWK-lipopeptide to selectively deliver genes to mouse tumor vasculature and its complexation with p53 to inhibit tumor growth. Biomaterials 31:1787–1797CrossRefPubMedGoogle Scholar
  28. 28.
    Pramanik D, Majeti BK, Mondal G, Karmali PP, Sistla R, Ramprasad OG et al (2008) Lipopeptide with a RGDK tetrapeptide sequence can selectively target genes to proangiogenic α5β1 integrin receptor and mouse tumor vasculature. J Med Chem 51:7298–7302CrossRefPubMedGoogle Scholar
  29. 29.
    Mondal G, Barui S, Chaudhuri A (2013) The relationship between the cyclic-RGDfK ligand and αvβ3 integrin receptor. Biomaterials 34:6249–6260CrossRefPubMedGoogle Scholar
  30. 30.
    Barui S, Saha S, Chaudhuri A (2014) Simultaneous delivery of doxorubicin and curcumin encapsulated in liposomes of pegylated RGDK-lipopeptide to tumor vasculature. Biomaterials 35:1643–1656CrossRefPubMedGoogle Scholar
  31. 31.
    Mondal G, Barui S, Saha S, Chaudhuri A (2013) Tumor growth inhibition through targeting liposomally bound curcumin to tumor vasculature. J Control Release 172:832–840CrossRefPubMedGoogle Scholar
  32. 32.
    Yu LL, Wu JG, Dai N, Yu HG, Si JM (2011) Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor. Oncol Rep 26:1197–1203PubMedGoogle Scholar
  33. 33.
    Holopainen JM, Angelova MI, Kinnunen PK (2000) Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J 78:830–838CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jiang J, Yang SJ, Wang JC, Yang LJ, Xu ZZ, Yang T, Liu XY, Zhang Q (2010) Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur J Pharm Biopharm 76:170–178CrossRefPubMedGoogle Scholar
  35. 35.
    Chen CW, Lu DW, Yeh MK, Shiau CY, Chiang CH (2011) Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int J Nanomedicine 6:2567–2580CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tagami T, Suzuki T, Matsunaga M, Nakamura K, Moriyoshi N, Ishida T, Kiwada H (2012) Anti-angiogenic therapy via cationic liposome-mediated systemic siRNA deliver. Int J Pharm 422:280–289CrossRefPubMedGoogle Scholar
  37. 37.
    Khatri N, Baradia D, Vhora I, Rathi M, Misra A (2014) cRGD grafted liposomes containing inorganic nano-precipitate complexed siRNA for intracellular delivery in cancer cells. J Control Release 182:45–57CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sakurai Y, Hatakeyama H, Sato Y, Hyodo M, Akita H, Ohga N, Hida K, Harashima H (2014) RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system. J Control Release 73:110–118CrossRefGoogle Scholar
  39. 39.
    Majumder P, Bhunia S, Bhattacharyya J, Chaudhuri A (2014) Inhibiting tumor growth by targeting liposomally encapsulated CDC20siRNA to tumor vasculature: therapeutic RNA interference. J Control Release 180:100–108CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hamada K, Udea M, Satoh M, Inagaki N, Shimada H, Yamada-Okabe H (2004) Increased expression of the genes for mitotic spindle assembly and chromosome segregation in both lung and pancreatic carcinomas. Cancer Gen Prot 1:231–240Google Scholar
  41. 41.
    Kim JM, Sohn HY, Yoon SY (2005) Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tag expressed in gastric cancer cells. Clin Cancer Res 11:473–482PubMedGoogle Scholar
  42. 42.
    Hornung V, Guenthner-Biller M, Bourquin C et al (2005) Sequence-specific potent induction of IFN-a by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270CrossRefPubMedGoogle Scholar
  43. 43.
    Judge AD, Sood V, Shaw JR et al (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23:457–462CrossRefPubMedGoogle Scholar
  44. 44.
    Kariko K, Bhuyan P, Capodici J et al (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172:6545–6549CrossRefPubMedGoogle Scholar
  45. 45.
    Marques JT, Williams BR (2005) Activation of the mammalian immune system by siRNAs. Nat Biotechnol 23:1399–1405CrossRefPubMedGoogle Scholar
  46. 46.
    Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995CrossRefPubMedGoogle Scholar
  47. 47.
    Heil F, Hemmi H, Hochrein H et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Biomaterials groupCSIR-Indian Institute of Chemical TechnologyHyderabadIndia
  2. 2.Chemical Biology Laboratory, National Cancer InstituteNational Institutes of HealthFrederickUSA
  3. 3.Academy of Scientific and Innovative Research (AcSIR)ChennaiIndia

Personalised recommendations