Skip to main content

CAVITY: Mapping the Druggable Binding Site

  • Protocol
  • First Online:
Computer-Aided Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Identifying reliable binding sites based on three-dimensional structures of proteins and other macromolecules is a key step in drug discovery. A good definition of known binding site and the detection of a novel site can provide valuable information for drug design efforts. CAVITY is developed for the detection and analysis of ligand-binding site(s). It has the capability of detecting potential binding site as well as estimating both the ligandabilities and druggabilites of the detected binding sites. CAVITY has been successfully applied in many research projects as a stand-alone program or combined with other drug discovery software. In this chapter, we introduce the computational methods and protocols used in CAVITY, and use examples to further illustrate the detailed procedures of how to apply this computational software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48(7):2518–2525

    Article  CAS  PubMed  Google Scholar 

  2. Huang N, Jacobson MP (2010) Binding-site assessment by virtual fragment screening. PLoS One 5(4)

    Google Scholar 

  3. Villoutreix BO, Lagorce D, Labbe CM, Sperandio O, Miteva MA (2013) One hundred thousand mouse clicks down the road: selected online resources supporting drug discovery collected over a decade. Drug Discov Today 18(21–22):1081–1089

    Article  PubMed  Google Scholar 

  4. Laurie ATR, Jackson RM (2006) Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Pept Sci 7(5):395–406

    Article  CAS  PubMed  Google Scholar 

  5. Henrich S et al (2010) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit 23(2):209–219

    CAS  PubMed  Google Scholar 

  6. Leis S, Schneider S, Zacharias M (2010) In silico prediction of binding sites on proteins. Curr Med Chem 17(15):1550–1562

    Article  CAS  PubMed  Google Scholar 

  7. Schmidtke P, Souaille C, Estienne F, Baurin N, Kroemer RT (2010) Large-scale comparison of four binding site detection algorithms. J Chem Inf Model 50(12):2191–2200

    Article  CAS  PubMed  Google Scholar 

  8. Yuan Y, Pei J, Lai L (2013) Binding site detection and druggability prediction of protein targets for structure-based drug design. Curr Pharm Des 19(12):2326–2333

    Article  CAS  PubMed  Google Scholar 

  9. Yuan Y, Pei J, Lai L (2011) LigBuilder 2: a practical de novo drug design approach. J Chem Inf Model 51(5):1083–1091

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Van Duyne R, Zhang N, Kashanchi F, Zeng C (2009) A novel binding pocket of cyclin-dependent kinase 2. Proteins 74(1):122–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qi Y, Wang Q, Tang B, Lai L (2012) Identifying allosteric binding sites in proteins with a two-state Go model for novel allosteric effector discovery. J Chem Theory Comput 8(8):2962–2971

    Article  CAS  PubMed  Google Scholar 

  12. Wu Y et al (2012) Dynamic modeling of human 5-lipoxygenase–inhibitor interactions helps to discover novel inhibitors. J Med Chem 55(6):2597–2605

    Article  CAS  PubMed  Google Scholar 

  13. Chen J, Ma XM, Yuan YX, Pei JF, Lai LH (2014) Protein-protein interface analysis and hot spots identification for chemical ligand design. Curr Pharm Des 20(8):1192–1200

    Article  CAS  PubMed  Google Scholar 

  14. Ma X, Qi Y, Lai L (2014) Allosteric sites can be identified based on the residue-residue interaction energy difference. Proteins. doi:10.1002/prot.24681

    Google Scholar 

  15. Wang Q, Qi Y, Yin N, Lai L (2014) Discovery of novel allosteric effectors based on the predicted allosteric sites for Escherichia coli D-3-phosphoglycerate dehydrogenase. PLoS One 9(4):e94829

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang RX, Fang XL, Lu YP, Wang SM (2004) The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 47(12):2977–2980

    Article  CAS  PubMed  Google Scholar 

  17. Wang RX, Fang XL, Lu YP, Yang CY, Wang SM (2005) The PDBbind database: methodologies and updates. J Med Chem 48(12):4111–4119

    Article  CAS  PubMed  Google Scholar 

  18. Yuan Y (2012) An integrated system for de novo drug design. Ph.D., Peking University, Beijing

    Google Scholar 

  19. Pei JF, Yin N, Ma XM, Lai LH (2014) Systems biology brings new dimensions for structure-based drug design. J Am Chem Soc 136(33):11556–11565

    Article  CAS  PubMed  Google Scholar 

  20. Nayal M, Honig B (2006) On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 63(4):892–906

    Article  CAS  PubMed  Google Scholar 

  21. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389

    Article  CAS  PubMed  Google Scholar 

  22. Cheng AC et al (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25(1):71–75

    Article  PubMed  Google Scholar 

  23. Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53(15):5858–5867

    Article  CAS  PubMed  Google Scholar 

  24. Sheridan RP, Maiorov VN, Holloway MK, Cornell WD, Gao Y-D (2010) Drug-like density: a method of quantifying the “bindability” of a protein target based on a very large set of pockets and drug-like ligands from the protein data bank. J Chem Inf Model 50(11):2029–2040

    Article  CAS  PubMed  Google Scholar 

  25. Krasowski A, Muthas D, Sarkar A, Schmitt S, Brenk R (2011) DrugPred: a structure-based approach to predict protein druggability developed using an extensive nonredundant data set. J Chem Inf Model 51(11):2829–2842

    Article  CAS  PubMed  Google Scholar 

  26. Nevalainen TJ (1993) Serum phospholipases A2 in inflammatory diseases. Clin Chem 39(12):2453–2459

    CAS  PubMed  Google Scholar 

  27. Schevitz RW et al (1995) Structure-based design of the first potent and selective inhibitor of human nonpancreatic secretory phospholipase-A(2). Nat Struct Biol 2(6):458–465

    Article  CAS  PubMed  Google Scholar 

  28. Hansford KA et al (2003) D-Tyrosine as a chiral precursor to potent inhibitors of human nonpancreatic secretory phospholipase A2 (IIa) with antiinflammatory activity. ChemBioChem 4(2–3):181–185

    Article  CAS  PubMed  Google Scholar 

  29. Lee LK et al (2013) Selective inhibition of human group IIA-secreted phospholipase A(2) (hGIIA) signaling reveals arachidonic acid metabolism is associated with colocalization of hGIIA to vimentin in rheumatoid synoviocytes. J Biol Chem 288(21):15269–15279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schrodinger, LLC (2010) The PyMOL molecular graphics system, Version 1.3r1

    Google Scholar 

  31. Bernstein FC et al (1977) The protein data bank. Eur J Biochem 80(2):319–324

    Article  CAS  PubMed  Google Scholar 

  32. Tripos Mol2 File Format documentation. http://www.tripos.com/tripos_resources/fileroot/pdfs/mol2_format.pdf

  33. Chen J, Lai L (2006) Pocket v. 2: further developments on receptor-based pharmacophore modeling. J Chem Inf Model 46(6):2684–2691

    Article  CAS  PubMed  Google Scholar 

  34. Schuller DJ, Grant GA, Banaszak LJ (1995) The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat Struct Mol Biol 2(1):69–76

    Article  CAS  Google Scholar 

  35. Sugimoto E, Pizer LI (1968) The mechanism of end product inhibition of serine biosynthesis I. Purification and kinetics of phosphoglycerate dehydrogenase. J Biol Chem 243(9):2081–2089

    CAS  PubMed  Google Scholar 

  36. Merdanovic M, Mönig T, Ehrmann M, Kaiser M (2013) Diversity of allosteric regulation in proteases. ACS Chem Biol 8(1):19–26

    Article  CAS  PubMed  Google Scholar 

  37. Wolan DW, Zorn JA, Gray DC, Wells JA (2009) Small-molecule activators of a proenzyme. Science 326(5954):853–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hardy JA, Lam J, Nguyen JT, O’Brien T, Wells JA (2004) Discovery of an allosteric site in the caspases. Proc Natl Acad Sci U S A 101(34):12461–12466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qi Y (2012) Molecular dynamics simulation of protein folding, dynamics and function. Ph.D. Thesis, Peking University, Beijing

    Google Scholar 

  40. Fiser A, Do RKG, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9(9):1753–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carlsson J et al (2011) Ligand discovery from a dopamine D-3 receptor homology model and crystal structure. Nat Chem Biol 7(11):769–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. O’Boyle N et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  43. ChemAxon (2012) Standardizer 6.1.0

    Google Scholar 

  44. Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14, University of California, San Francisco

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Ministry of Science and Technology of China (grant numbers: 2012AA020308, 2012AA020301) and the National Natural Science Foundation of China (grant numbers: 81273436, 91313302).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfeng Pei or Luhua Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, W., Yuan, Y., Pei, J., Lai, L. (2015). CAVITY: Mapping the Druggable Binding Site. In: Zhang, W. (eds) Computer-Aided Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2015_45

Download citation

  • DOI: https://doi.org/10.1007/7653_2015_45

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3519-2

  • Online ISBN: 978-1-4939-3521-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics