Advertisement

Tumor Targeting by RGD-Grafted PLGA-Based Nanotheranostics Loaded with Paclitaxel and Superparamagnetic Iron Oxides

  • Fabienne Danhier
  • Pierre Danhier
  • Nathalie Schleich
  • Chrystelle Po
  • Sophie Laurent
  • Pierre Sibret
  • Christine Jérôme
  • Vincent Poucelle
  • Bernard Gallez
  • Véronique Préat
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Theranostic nanoparticles have the potential to revolutionize cancer diagnosis and therapy. Many groups have demonstrated differential levels of tumor growth between tumors treated by targeted or untargeted nanoparticles; however, only few have shown in vivo efficacy in both therapeutic and diagnostic approach. Herein, we first develop and characterize dual-paclitaxel (PTX)/superparamagnetic iron oxide (SPIO)-loaded PLGA-based nanoparticles grafted with the RGD peptide, for a theranostic purpose. Second, we compare in vivo different strategies in terms of targeting capabilities: (1) passive targeting via the EPR effect, (2) active targeting of αvβ3 integrin via RGD grafting, (3) magnetic guidance via a magnet placed on the tumor, and (4) the combination of the magnetic guidance and the active targeting of αvβ3 integrin. In this chapter, we present the general flowchart applied for this project: (1) the polymer and SPIO synthesis, (2) the physicochemical characterization of the nanoparticles, (3) the magnetic properties of the nanoparticles, and (4) the in vivo evaluation of the nanoparticles for their therapeutic and diagnosis purposes. We employ the electron spin resonance spectroscopy and magnetic resonance imaging to both quantify and visualize the accumulation of theranostic nanoparticles into the tumors.

Keywords:

PLGA-nanoparticles SPIO Paclitaxel Cancer therapy Magnetic resonance imaging Tumor targeting Nanotheranostic 

Notes

Acknowledgment

This work is supported by grants from the Université catholique de Louvain (F.S.R.) and Fonds National de la Recherche Scientifique (F.R.S.-F.N.R.S.). F. Danhier is a Postdoctoral F.R.S.-F.N.R.S. Research Fellow. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. 1.
    Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62:1052–1063CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lammers T, Kiessling F, Hennink WE et al (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7:1899–1912CrossRefGoogle Scholar
  3. 3.
    Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207CrossRefGoogle Scholar
  4. 4.
    Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146CrossRefGoogle Scholar
  5. 5.
    Taurin S, Nehoff H, Greish K (2012) Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J Control Release 164:265–275CrossRefGoogle Scholar
  6. 6.
    Danhier F, Vroman B, Lecouturier N et al (2009) Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J Control Release 140:166–173CrossRefGoogle Scholar
  7. 7.
    Danhier F, Le Breton A, Preat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9:2961–2973CrossRefGoogle Scholar
  8. 8.
    Garanger E, Boturyn D, Coll JL et al (2006) Multivalent RGD synthetic peptides as potent alphaVbeta3 integrin ligands. Org Biomol Chem 4:1958–1965CrossRefGoogle Scholar
  9. 9.
    Cole AJ, Yang VC, David AE (2011) Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 29:323–332CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Radermacher KA, Beghein N, Boutry S et al (2009) In vivo detection of inflammation using pegylated iron oxide particles targeted at E-selectin: a multimodal approach using MR imaging and EPR spectroscopy. Invest Radiol 44:398–404CrossRefPubMedGoogle Scholar
  11. 11.
    Radermacher KA, Magat J, Bouzin C et al (2012) Multimodal assessment of early tumor response to chemotherapy: comparison between diffusion-weighted MRI, 1H-MR spectroscopy of choline and USPIO particles targeted at cell death. NMR Biomed 25:514–522CrossRefPubMedGoogle Scholar
  12. 12.
    Pourcelle V, Freichels H, Stoffelbach F et al (2009) Light induced functionalization of PCL-PEG block copolymers for the covalent immobilization of biomolecules. Biomacromolecules 10:966–974CrossRefPubMedGoogle Scholar
  13. 13.
    Zweers ML, Engbers GH, Grijpma DW et al (2004) In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide). J Control Release 100:347–356CrossRefPubMedGoogle Scholar
  14. 14.
    Schleich N, Sibret P, Danhier P et al (2013) Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm 447:94–101CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pourcelle V, Devouge S, Garinot M et al (2007) PCL-PEG-based nanoparticles grafted with GRGDS peptide: preparation and surface analysis by XPS. Biomacromolecules 8:3977–3983CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Danhier P, De Preter G, Boutry S et al (2012) Electron paramagnetic resonance as a sensitive tool to assess the iron oxide content in cells for MRI cell labeling studies. Contrast Media Mol Imaging 7:302–307CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Laurent S, Bridot JL, Elst LV et al (2010) Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem 2:427–449CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yang HW, Hua MY, Liu HL et al (2012) An epirubicin-conjugated nanocarrier with MRI function to overcome lethal multidrug-resistant bladder cancer. Biomaterials 33:3919–3930CrossRefGoogle Scholar
  19. 19.
    Lyons JA, Sheahan BJ, Galbraith SE et al (2007) Inhibition of angiogenesis by a Semliki Forest virus vector expressing VEGFR-2 reduces tumour growth and metastasis in mice. Gene Ther 14:503–513CrossRefGoogle Scholar
  20. 20.
    Schleich N, Po C, Jacobs D et al (2014) Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 194:82–91CrossRefPubMedGoogle Scholar
  21. 21.
    Danhier P, De Preter G, Magat J et al (2014) Multimodal cell tracking of a spontaneous metastasis model: comparison between MRI, electron paramagnetic resonance and bioluminescence. Contrast Media Mol Imaging 9:143–153CrossRefPubMedGoogle Scholar
  22. 22.
    Danhier P, Magat J, Leveque P et al (2015) In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance. NMR Biomed 28:367–375CrossRefPubMedGoogle Scholar
  23. 23.
    Na HS, Lim YK, Jeong YI et al (2010) Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. Int J Pharm 383:192–200CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fabienne Danhier
    • 1
  • Pierre Danhier
    • 2
  • Nathalie Schleich
    • 1
  • Chrystelle Po
    • 2
  • Sophie Laurent
    • 3
  • Pierre Sibret
    • 4
  • Christine Jérôme
    • 4
  • Vincent Poucelle
    • 5
  • Bernard Gallez
    • 2
  • Véronique Préat
    • 1
  1. 1.Louvain Drug Research Institute, Advanced Drug delivery and BiomaterialsUniversité catholique de LouvainBrusselsBelgium
  2. 2.Louvain Drug Research Institute, Laboratory of Biomedical Magnetic ResonanceUniversité catholique de LouvainBrusselsBelgium
  3. 3.Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging LaboratoryUniversité de MonsMonsBelgium
  4. 4.Center for Education and Research on MacromoleculeUniversité de LiègeLiègeBelgium
  5. 5.Unité de Chimie organique et médicinaleUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations