Skip to main content

Using the Alternative Model C. elegans in Reproductive and Developmental Toxicology Studies

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Reproduction is an extraordinarily complex biological process that requires the coordinated action of multiple cell types over the course of several months in rodent to many years in humans. A proper execution of the male and female reproductive programs is therefore crucial for the production of viable gametes and the propagation of species. Mounting evidence highlights the exquisite sensitivity of reproductive pathways to environmental influences. Therefore, there is a great need for comprehensive testing of environmental chemicals to examine their effects on reproduction. To this effect, alternative animal models, such as the nematode Caenorhabditis elegans, offer great advantages rooted in their biology which will be explored in this chapter. We will introduce the use of C. elegans in toxicology, its reproductive features that can be mobilized, and describe several validated assays that can greatly inform targeted mammalian studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. National Research Council (2007) Toxicity testing in the 21st century: a vision and a strategy. The National Academies Press, Washington

    Google Scholar 

  2. Olson H et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32(1):56–67

    Article  CAS  PubMed  Google Scholar 

  3. C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282(5396):2012–2018

    Article  Google Scholar 

  4. Trifunovic A et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990):417–423

    Article  CAS  PubMed  Google Scholar 

  5. Braeckman BP et al (2002) Assaying metabolic activity in ageing Caenorhabditis elegans. Mech Ageing Dev 123(2–3):105–119

    Article  CAS  PubMed  Google Scholar 

  6. Tann AW et al (2011) Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5'-EXO/endonuclease) in their repair. J Biol Chem 286(37):31975–31983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Senoo-Matsuda N et al (2003) A complex II defect affects mitochondrial structure, leading to ced-3- and ced-4-dependent apoptosis and aging. J Biol Chem 278(24):22031–22036

    Article  CAS  PubMed  Google Scholar 

  8. Ishiguro H et al (2001) Enhancement of oxidative damage to cultured cells and Caenorhabditis elegans by mitochondrial electron transport inhibitors. IUBMB Life 51(4):263–268

    Article  CAS  PubMed  Google Scholar 

  9. Li N et al (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278(10):8516–8525

    Article  CAS  PubMed  Google Scholar 

  10. Meyer JN et al (2013) Mitochondria as a target of environmental toxicants. Toxicol Sci 134(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leung MC et al (2010) Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B1 but not benzo[a]pyrene in vivo. Toxicol Sci 118(2):444–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boyd WA et al (2010) Nucleotide excision repair genes are expressed at low levels and are not detectably inducible in Caenorhabditis elegans somatic tissues, but their function is required for normal adult life after UVC exposure. Mutat Res 683(1–2):57–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meyer JN et al (2007) Decline of nucleotide excision repair capacity in aging Caenorhabditis elegans. Genome Biol 8(5):R70

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bess AS et al (2012) Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans. Nucleic Acids Res 40(16):7916–7931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bess AS et al (2013) UVC-induced mitochondrial degradation via autophagy correlates with mtDNA damage removal in primary human fibroblasts. J Biochem Mol Toxicol 27(1):28–41

    Article  CAS  PubMed  Google Scholar 

  16. Gong K et al (2012) Autophagy-related gene 7 (ATG7) and reactive oxygen species/extracellular signal-regulated kinase regulate tetrandrine-induced autophagy in human hepatocellular carcinoma. J Biol Chem 287(42):35576–35588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bodhicharla R et al (2014) The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces mitochondrial and nuclear DNA damage in Caenorhabditis elegans. Environ Mol Mutagen 55(1):43–50

    Article  CAS  PubMed  Google Scholar 

  18. Tam ZY et al (2014) Effects of lithium on age-related decline in mitochondrial turnover and function in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 69(7):810–820

    Article  CAS  PubMed  Google Scholar 

  19. O'Neil N, Rose A (2006) DNA repair. WormBook. p. 1–12

    Google Scholar 

  20. Pu P, Le W (2008) Dopamine neuron degeneration induced by MPP+ is independent of CED-4 pathway in Caenorhabditis elegans. Cell Res 18(9):978–981

    Article  CAS  PubMed  Google Scholar 

  21. Zhou S, Wang Z, Klaunig JE (2013) Caenorhabditis elegans neuron degeneration and mitochondrial suppression caused by selected environmental chemicals. Int J Biochem Mol Biol 4(4):191–200

    PubMed  PubMed Central  Google Scholar 

  22. Benedetto A et al (2010) Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans. PLoS Genet 6(8):1–18

    Google Scholar 

  23. Settivari R et al (2013) The Nrf2/SKN-1-dependent glutathione S-transferase pi homologue GST-1 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of manganism. Neurotoxicology 38:51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nass R et al (2002) Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99(5):3264–3269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Arras L et al (2013) Comparative genomics RNAi screen identifies Eftud2 as a novel regulator of innate immunity. Genetics 197(2):485–496

    Article  PubMed  PubMed Central  Google Scholar 

  26. McElwee MK et al (2013) Comparative toxicogenomic responses of mercuric and methyl-mercury. BMC Genomics 14:698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Turner EA et al (2013) Assessing different mechanisms of toxicity in mountaintop removal/valley fill coal mining-affected watershed samples using Caenorhabditis elegans. PLoS One 8(9):e75329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boyd WA et al (2010) A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol Appl Pharmacol 245(2):153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allard P, Colaiacovo MP (2010) Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc Natl Acad Sci U S A 107(47):20405–20410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hunt PA et al (2003) Bisphenol a exposure causes meiotic aneuploidy in the female mouse. Curr Biol 13(7):546–553

    Article  CAS  PubMed  Google Scholar 

  31. Gartner A et al (2000) A conserved checkpoint pathway mediates DNA damage–induced apoptosis and cell cycle arrest in C. elegans. Mol Cell 5(3):435–443

    Article  CAS  PubMed  Google Scholar 

  32. Gumienny TL et al (1999) Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126(5):1011–1022

    CAS  PubMed  Google Scholar 

  33. Mello C, Fire A (1995) DNA transformation. Methods Cell Biol 48:451–482

    Article  CAS  PubMed  Google Scholar 

  34. Strome S, Wood WB (1982) Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Proc Natl Acad Sci U S A 79(5):1558–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crittenden SL et al (1994) GLP-1 is localized to the mitotic region of the C. elegans germ line. Development 120(10):2901–2911

    CAS  PubMed  Google Scholar 

  36. Allard P et al (2013) A C. elegans screening platform for the rapid assessment of chemical disruption of germline function. Environ Health Perspect 121(6):717–724

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hodges CA et al (2002) Experimental evidence that changes in oocyte growth influence meiotic chromosome segregation. Hum Reprod 17(5):1171–1180

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Allard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ferreira, D.W., Chen, Y., Allard, P. (2014). Using the Alternative Model C. elegans in Reproductive and Developmental Toxicology Studies. In: Faqi, A. (eds) Developmental and Reproductive Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2014_27

Download citation

  • DOI: https://doi.org/10.1007/7653_2014_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7206-7

  • Online ISBN: 978-1-4939-7208-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics