Skip to main content

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Murine models of rheumatoid arthritis are widely used for mechanistic studies and for the validation of therapeutic targets. Many models exist and can be classified into induced and spontaneous types. Even though models vary considerably in the pathogenesis of lesions, overlapping spectra of morphological features render the commonly used models suitable for standard histopathological examination and scoring strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imboden JB (2009) The immunopathogenesis of rheumatoid arthritis. Ann Rev Pathol 4:417–434

    Article  CAS  Google Scholar 

  2. Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P et al (2012) High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet 44:1336–1340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee H-S, Jia X et al (2012) Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 44:291–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wegner N, Lundberg K, Kinloch A, Fisher B, Malmström V, Feldmann M et al (2010) Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immuol Rev 233:34–54

    Article  CAS  Google Scholar 

  5. Cordova KN, Willis VC, Haskins K, Holers VM (2013) A citrullinated fibrinogen-specific T cell line enhances autoimmune arthritis in a mouse model of rheumatoid arthritis. J Immunol 190(4):1457–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cantaert T, Teitsma C, Tak PP, Baeten D (2012) Presence and role of anti-citrullinated protein antibodies in experimental arthritis models. Arthritis Rheum. doi: 10.1002/art.37839

    Google Scholar 

  7. Sakaguchi S, Sakaguchi N (2005) Animal models of arthritis caused by systemic alteration of the immune system. Curr Opin Immunol 17:589–594

    Article  CAS  PubMed  Google Scholar 

  8. Bolon B, Stolina M, King C, Middleton S, Gasser J, Zack D et al (2011) Rodent preclinical models for developing novel antiarthritic molecules: comparative biology and preferred methods for evaluating efficacy. J Biomed Biotechnol 2011:569068

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kannan K, Ortmann RA, Kimpel D (2005) Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology 12:167–181

    Article  PubMed  Google Scholar 

  10. Lindqvist A (2002) Mouse models for rheumatoid arthritis. Trends Genet 18:S7–S13

    Article  CAS  Google Scholar 

  11. Joe B, Wilder RL (1999) Animal models of rheumatoid arthritis. Mol Med Today 5:367–369

    Article  CAS  PubMed  Google Scholar 

  12. van den Berg WB, Joosten LAB, van Lent PLEM (2007) Murine antigen-induced arthritis. Methods Mol Med 136:243–253

    Article  PubMed  Google Scholar 

  13. Joosten LAB, Netea MG, Kim S-H, Yoon D-Y, Oppers-Walgreen B, Radstake TRD et al (2006) IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc Natl Acad Sci U S A 103:3298–3303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bárdos T, Mikecz K, Finnegan A, Zhang J, Glant TT (2002) T and B cell recovery in arthritis adoptively transferred to SCID mice: antigen-specific activation is required for restoration of autopathogenic CD4+ Th1 cells in a syngeneic system. J Immunol 168:6013–6021

    Article  PubMed  Google Scholar 

  15. Kis-Toth K, Radacs M, Olasz K, van Eden W, Mikecz K, Glant TT (2012) Arthritogenic T cells drive the recovery of autoantibody-producing B cell homeostasis and the adoptive transfer of arthritis in SCID mice. Int Immunol 24:507–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hayer S, Redlich K, Korb A, Hermann S, Smolen J, Schett G (2007) Tenosynovitis and osteoclast formation as the initial preclinical changes in a murine model of inflammatory arthritis. Arthritis Rheum 56:79–88

    Article  PubMed  Google Scholar 

  17. Reilkoff RA, Bucala R, Herzog EL (2011) Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol 11:427–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Galligan CL, Siminovitch KA, Keystone EC, Bykerk V, Perez OD, Fish EN (2010) Fibrocyte activation in rheumatoid arthritis. Rheumatology 49:640–651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Galligan CL, Fish EN (2013) The role of circulating fibrocytes in inflammation and autoimmunity. J Leukoc Biol 93:45–50

    Article  CAS  PubMed  Google Scholar 

  20. Galligan CL, Fish EN (2012) Circulating fibrocytes contribute to the pathogenesis of collagen antibody-induced arthritis. Arthritis Rheum 64:3583–3593

    Article  CAS  PubMed  Google Scholar 

  21. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361

    Article  CAS  PubMed  Google Scholar 

  22. Shiozawa S, Tsumiyama K, Yoshida K, Hashiramoto A (2011) Pathogenesis of joint destruction in rheumatoid arthritis. Arch Immunol Exp Ther 59:89–95

    Article  CAS  Google Scholar 

  23. Kobayashi I, Ziff M (1975) Electron microscopic studies of the cartilage-pannus junction in rheumatoid arthritis. Arthritis Rheum 18:475–483

    Article  CAS  PubMed  Google Scholar 

  24. Goldring SR (2002) Pathogenesis of bone erosions in rheumatoid arthritis. Curr Opin Rheumatol 14:406–410

    Article  PubMed  Google Scholar 

  25. Trentham DE, Townes AS, Kang AH (1977) Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med 146:857–868

    Article  CAS  PubMed  Google Scholar 

  26. Cook AD, Rowley MJ, Stockman A, Muirden KD, Mackay IR (1994) Specificity of antibodies to type II collagen in early rheumatoid arthritis. J Rheumatol 21:1186–1191

    CAS  PubMed  Google Scholar 

  27. Tarkowski A, Klareskog L, Carlsten H, Herberts P, Koopman WJ (1989) Secretion of antibodies to types I and II collagen by synovial tissue cells in patients with rheumatoid arthritis. Arthritis Rheum 32:1087–1092

    Article  CAS  PubMed  Google Scholar 

  28. Schurgers E, Billiau A, Matthys P (2011) Collagen-induced arthritis as an animal model for rheumatoid arthritis: focus on interferon-γ. J Interferon Cytokine Res 31:917–926

    Article  CAS  PubMed  Google Scholar 

  29. Park MJ, Park HS, Oh HJ, Lim JY, Yoon BY, Kim HY et al (2012) IL-17-deficient allogeneic bone marrow transplantation prevents the induction of collagen-induced arthritis in DBA/1J mice. Exp Mol Med 44:694–705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kelchtermans H, Billiau A, Matthys P (2008) How interferon-gamma keeps autoimmune diseases in check. Trends Immunol 29:479–486

    Article  CAS  PubMed  Google Scholar 

  31. Williams RO (2007) Collagen-induced arthritis in mice. Methods Mol Med 136:191–199

    Article  CAS  PubMed  Google Scholar 

  32. Wooley PH, Luthra HS, Stuart JM, David CS (1981) Type II collagen-induced arthritis in mice. I. Major histocompatibility complex (I region) linkage and antibody correlates. J Exp Med 154:688–700

    Article  CAS  PubMed  Google Scholar 

  33. Glant TT, Mikecz K, Arzoumanian A, Poole AR (1987) Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis Rheum 30:201–212

    Article  CAS  PubMed  Google Scholar 

  34. Glant TT, Mikecz K (2004) Proteoglycan aggrecan-induced arthritis: a murine autoimmune model of rheumatoid arthritis. Methods Mol Med 102:313–338

    CAS  PubMed  Google Scholar 

  35. Cao Y, Doodes PD, Glant TT, Finnegan A (2008) IL-27 induces a Th1 immune response and susceptibility to experimental arthritis. J Immunol 180:922–930

    Article  CAS  PubMed  Google Scholar 

  36. Nandakumar KS, Holmdahl R (2006) Antibody-induced arthritis: disease mechanisms and genes involved at the effector phase of arthritis. Arthritis Res Ther 8:223

    Article  PubMed Central  PubMed  Google Scholar 

  37. Nandakumar KS, Svensson L, Holmdahl R (2003) Collagen type II-specific monoclonal antibody-induced arthritis in mice. Description of the disease and the influence of age, sex, and genes. Am J Pathol 163:1827–1837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Nandakumar KS, Holmdahl R (2007) Collagen antibody induced arthritis. Methods Mol Med 136:215–223

    Article  CAS  PubMed  Google Scholar 

  39. Holmdahl R, Mo J, Nordling C, Larsson P, Jansson L, Goldschmidt T et al (1989) Collagen induced arthritis: an experimental model for rheumatoid arthritis with involvement of both DTH and immune complex mediated mechanisms. Clin Exp Rheumatol 7:S51–S55

    PubMed  Google Scholar 

  40. Khachigian LM (2006) Collagen antibody-induced arthritis. Nature Protocols 1:2512–2516

    Article  CAS  PubMed  Google Scholar 

  41. Stuart JM, Dixon FJ (1983) Serum transfer of collagen-induced arthritis in mice. J Exp Med 158:378–392

    Article  CAS  PubMed  Google Scholar 

  42. Wooley PH, Luthra HS, Singh SK, Huse AR, Stuart JM, David CS (1984) Passive transfer of arthritis to mice by injection of human anti-type II collagen antibody. Mayo Clinic Proc 59:737–743

    Article  CAS  Google Scholar 

  43. Terato K, Hasty KA, Reife RA, Cremer MA, Kang AH, Stuart JM (1992) Induction of arthritis with monoclonal antibodies to collagen. J Immunol 148:2103–2108

    CAS  PubMed  Google Scholar 

  44. Terato K, Harper DS, Griffiths MM, Hasty DL, Ye XJ, Cremer MA et al (1995) Collagen-induced arthritis in mice: synergistic effect of E. coli lipopolysaccharide bypasses epitope specificity in the induction of arthritis with monoclonal antibodies to type II collagen. Autoimmunity 22:137–147

    Article  CAS  PubMed  Google Scholar 

  45. Banda NK, Hyatt S, Antonioli AH, White JT, Glogowska M, Takahashi K et al (2012) Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. J Immunol 188:1469–1478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Potter M, Wax JS (1981) Genetics of susceptibility to pristane-induced plasmacytomas in BALB/cAn: reduced susceptibility in BALB/cJ with a brief description of pristane-induced arthritis. J Immunol 127:1591–1595

    CAS  PubMed  Google Scholar 

  47. Patten C, Bush K, Rioja I, Morgan R, Wooley P, Trill J et al (2004) Characterization of pristane-induced arthritis, a murine model of chronic disease: Response to antirheumatic agents, expression of joint cytokines, and immunopathology. Arthritis Rheum 50:3334–3345

    Article  CAS  PubMed  Google Scholar 

  48. Waksman BH (2002) Immune regulation in adjuvant disease and other arthritis models: relevance to pathogenesis of chronic arthritis. Scand J Immunol 56:12–34

    Article  CAS  PubMed  Google Scholar 

  49. Gauldie SD, McQueen DS, Clarke CJ, Chessell IP (2004) A robust model of adjuvant-induced chronic unilateral arthritis in two mouse strains. J Neurosci Methods 139:281–291

    Article  PubMed  Google Scholar 

  50. Parvathy SS, Masocha W (2013) Gait analysis of C57BL/6 mice with complete Freund's adjuvant-induced arthritis using the CatWalk system. BMC Musculoskelet Disord 14:14

    Article  PubMed Central  PubMed  Google Scholar 

  51. Miller LS, O’Connell RM, Gutierrez MA, Pietras EM, Shahangian A, Gross CE et al (2006) MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against staphylococcus aureus. Immunity 24:79–91

    Article  CAS  PubMed  Google Scholar 

  52. Dayer J-M, Bresnihan B (2002) Targeting Interleukin-1 in treatment of rheumatoid arthrtitis. Arthritis Rheum 46:574–578

    Article  CAS  PubMed  Google Scholar 

  53. Horai R, Saijo S, Tanioka H, Nakae S, Sudo K, Okahara A et al (2000) Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in Interleukin 1 receptor antagonist-deficient mice. J Exp Med 191:313–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Leipe J, Skapenko A, Lipsky PE, Schulze-Koops H (2005) Regulatory T cells in rheumatoid arthritis. Arthritis Res Ther 7:93–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Svendsen P, Andersen CB, Willcox N, Coyle AJ, Holmdahl R, Kamradt T et al (2004) Tracking of proinflammatory collagen-specific T cells in early and late collagen-induced arthritis in humanized mice. J Immunol 173:7037–7045

    Article  CAS  PubMed  Google Scholar 

  56. Cope AP (2008) T cells in rheumatoid arthritis. Arthritis Res Ther. 10

    Google Scholar 

  57. Samson M, Audia S, Janikashvili N, Ciudad M, Trad M, Fraszczak J et al (2012) Inhibition of Interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum 64:2499–2503

    Article  CAS  PubMed  Google Scholar 

  58. Horai R, Nakajima A, Habiro K, Kotani M, Nakae S, Matsuki T et al (2004) TNFa is crucial for the development of autoimmune arthritis in IL-1 receptor antagonist-deficient mice. J Clin Invest 114:1603–1611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y (2003) IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci 100:5896–5990

    Article  Google Scholar 

  60. Koenders MI, Devesa I, Marijnissen RJ, Abdollahi-Roodsaz S, Boots AMH, Walgreen B et al (2008) Interleukin-1 drives pathogenic Th17 cells during spontaneous arthritis in Interleukin-1 receptor antagonist-deficient mice. Arthritis Rheum 58:3461–3470

    Article  CAS  PubMed  Google Scholar 

  61. Corvaisier M, Delneste Y, Jeanvoine H, Preisser L, Blanchard S, Garo E et al (2012) IL-26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation. PLoS Biol 10

    Google Scholar 

  62. Kay J, Calabrese L (2004) The role of interleukin-1 in the pathogenesis of rheumatoid arthritis. Rheumatology 43:iii2–iii9

    Article  PubMed  Google Scholar 

  63. Dayer J-M (2003) The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology 42:ii3–ii10

    Article  CAS  PubMed  Google Scholar 

  64. Feldmann M, Brennan FM, Maini RN (1996) Role of cytokines in rheumatoid arthritis. Ann Rev Immunol 14:397–440

    Article  CAS  Google Scholar 

  65. Kalliolias GD, Liossis S-NC (2008) The future of the IL-1 receptor antagonist anakinra: from rheumatoid arthritis to adult-onset Still's disease and systemic-onset juvenile idiopathic arthritis. Expert Opin Investig Drugs 17:349–359

    Article  CAS  PubMed  Google Scholar 

  66. Liu M, Huang Y, Hu L, Liu G, Hu X, Liu D et al (2012) Selective delivery of interleukine-1 receptor antagonist to inflamed joint by albumin fusion. BMC Biotechnol 12:68

    Article  PubMed Central  PubMed  Google Scholar 

  67. Ferraccioli G, Bracci-Laudiero L, Alivernini S, Gremese E, Tolusso B, De Benedetti F (2010) Interleukin-1b and Interleukin-6 in arthritis animal models: roles in early phase of transition from acute to chronic inflammation and relevance for human rheumatoid arthritis. Mol Med 16:552–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Monach P, Hattori K, Huang H, Hyatt E, Morse J, Nguyen L et al (2007) The K/BxN mouse model of inflammatory arthritis: theory and practice. Methods Mol Med 136:269–282

    Article  CAS  PubMed  Google Scholar 

  69. Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D (1996) Organ-specific disease provoked by systemic autoimmunity. Cell 87:811–822

    Article  CAS  PubMed  Google Scholar 

  70. Maccioni M, Zeder-Lutz G, Huang H, Ebel C, Gerber P, Hergueux J et al (2002) Arthritogenic monoclonal antibodies from K/BxN mice. J Exp Med 195:1071–1077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Sakaguchi S, Benham H, Cope AP, Thomas R (2012) T-cell receptor signaling and the pathogenesis of autoimmune arthritis: insights from mouse and man. Immunol Cell Biol 90:277–287

    Article  CAS  PubMed  Google Scholar 

  72. Lekander I, Borgstrom F, Lysholm J, van Vollenhoven RF, Lindblad S, Geborek P et al. The cost-effectiveness of TNF-inhibitors for the treatment of rheumatoid arthritis in Swedish clinical practice. Eur J Health Econ 2012

    Google Scholar 

  73. Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D et al (1991) Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 10:4025–4031

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Li P, Schwarz EM (2003) The TNF-a transgenic mouse model of inflammatory arthritis. Springer Semin Immunopathol 25:19–33

    Article  PubMed  Google Scholar 

  75. Li J, Kuzin I, Moshkani S, Proulx ST, Xing L, Skrombolas D et al (2010) Expanded CD23+/CD21hi B cells in inflamed lymph nodes are associated with the onset of inflammatory-erosive arthritis in TNF-transgenic mice and are targets of anti-CD20 therapy. J Immunol 184:6142–6150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Lewis M, Tartaglia LA, Lee A, Bennett GL, Rice GC, Wong GH et al (1991) Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc Natl Acad Sci U S A 88:2830–2834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Carballo E, Lai WS, Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281:1001–1005

    Article  CAS  PubMed  Google Scholar 

  78. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G (1999) Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10:387–398

    Article  CAS  PubMed  Google Scholar 

  79. Buttgereit F, Zhou H, Kalak R, Gaber T, Spies CM, Huscher D et al (2009) Transgenic disruption of glucocorticoid signaling in mature osteoblasts and osteocytes attenuates K/BxN mouse serum-induced arthritis in vivo. Arthritis Rheum 60:1998–2007

    Article  CAS  PubMed  Google Scholar 

  80. Nishida S, Tsurukami H, Sakai A, Sakata T, Ikeda S, Tanaka M et al (2002) Stage-dependent changes in trabecular bone turnover and osteogenic capacity of marrow cells during development of type II collagen-induced arthritis in mice. Bone 30:872–879

    Article  CAS  PubMed  Google Scholar 

  81. Barck KH, Lee WP, Diehl LJ, Ross J, Gribling P, Zhang Y et al (2004) Quantification of cortical bone loss and repair for therapeutic evaluation in collagen-induced arthritis, by micro-computed tomography and automated image analysis. Arthritis Rheum 50:3377–3386

    Article  PubMed  Google Scholar 

  82. Lee S-W, Greve JM, Leaffer D, Lollini L, Bailey P, Gold GE et al (2008) Early findings of small-animal MRI and small-animal computed tomography correlate with histological changes in a rat model of rheumatoid arthritis. NMR Biomed 21:527–536

    Article  PubMed  Google Scholar 

  83. Schurgers E, Mertens F, Vanoirbeek JAJ, Put S, Mitera T, Langhe ED et al (2012) Pulmonary inflammation in mice with collagen-induced arthritis is conditioned by complete Freund’s adjuvant and regulated by endogenous IFN-γ. Cellular Immune Response 42:3223–3234

    CAS  Google Scholar 

  84. Kuhn KA, Kulik L, Tomooka B, Braschler KJ, Arend WP, Robinson WH et al (2006) Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest 116:961–973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Caplazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Caplazi, P., Diehl, L. (2014). Histopathology in Mouse Models of Rheumatoid Arthritis. In: Potts, S., Eberhard, D., Wharton, Jr., K. (eds) Molecular Histopathology and Tissue Biomarkers in Drug and Diagnostic Development. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2014_20

Download citation

  • DOI: https://doi.org/10.1007/7653_2014_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2680-0

  • Online ISBN: 978-1-4939-2681-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics