Skip to main content

The Influence of Environmental Contaminants and Lifestyle on Testicular Damage and Male Fertility

  • Protocol
  • First Online:
Developmental and Reproductive Toxicology

Abstract

Environmental contaminants and lifestyle play a major role in influencing human fertility. Most substances toxic to male fertility target functions of specific testicular cells or act at various levels of the hypothalamo-hypophyseal-testicular axis. The bio-accumulation of toxic compounds is often exacerbated by lifestyle choices and workplace environment. Inadvertently this impairs spermatogenesis, fertility, and survival of the offspring by affecting the genetic constitution of the spermatozoa. Such changes can be transmitted to future generations and may affect their fertility and health. Testicular insult can be assessed by sperm functional assays and by measuring biomarkers in tissues and body fluids including spermatozoa. However, histopathology remains the standard and is generally used to confirm the results of these other assays. The need of sensitive, reliable, robust, and easily measured biomarkers that are able to detect testicular injury before it becomes a chronic and irreversible effect is evident. The noninvasive approach of identifying sperm molecular signatures as biomarkers is promising and may emerge as a valuable diagnostic tool in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swan SH, Kruse RL, Liu F et al (2003) Semen quality in relation to biomarkers of pesticide exposure. Environ Health Perspect 111(12):1478–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharma R, Biedenharn KR, Fedor JM et al (2013) Lifestyle factors and reproductive health: taking control of your fertility. Reprod Biol Endocrinol 11:66

    Article  PubMed  PubMed Central  Google Scholar 

  3. Campion S, Catlin N, Heger N et al (2012) Male reprotoxicity and endocrine disruption. EXS 101:315–360

    PubMed  PubMed Central  Google Scholar 

  4. Linschooten JO, Verhofstad N, Gutzkow K et al (2013) Paternal lifestyle as a potential source of germline mutations transmitted to offspring. FASEB J 27(7):2873–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anway MD, Cupp AS, Uzumcu M et al (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308(5727):1466–1469

    Article  CAS  PubMed  Google Scholar 

  6. Dias BG, Ressler KJ (2014) Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 17(1):89–96

    Article  CAS  PubMed  Google Scholar 

  7. Rando OJ (2012) Daddy issues: paternal effects on phenotype. Cell 151(4):702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rassoulzadegan M, Grandjean V, Gounon P et al (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441(7092):469–474

    Article  CAS  PubMed  Google Scholar 

  9. Jodar M, Selvaraju S, Sendler E et al (2013) The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update 19(6):604–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Skinner MK (2007) Endocrine disruptors and epigenetic transgenerational disease etiology. Pediatr Res 61(5 Pt 2):48R–50R

    Article  CAS  PubMed  Google Scholar 

  11. Guerrero-Bosagna C, Savenkova M, Haque MM et al (2013) Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility. PLoS One 8(3):e59922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anderson LM, Riffle L, Wilson R et al (2006) Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 22(3):327–331

    Article  CAS  PubMed  Google Scholar 

  13. Carone BR, Fauquier L, Habib N et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143(7):1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ng SF, Lin RC, Laybutt DR et al (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467(7318):963–966

    Article  CAS  PubMed  Google Scholar 

  15. Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10(11):682–688

    Article  CAS  PubMed  Google Scholar 

  16. Dobrzynska MM, Tyrkiel EJ, Pachocki KA (2011) Developmental toxicity in mice following paternal exposure to Di-N-butyl-phthalate (DBP). Biomed Environ Sci 24(5):569–578

    CAS  PubMed  Google Scholar 

  17. Hauser R (2008) Urinary phthalate metabolites and semen quality: a review of a potential biomarker of susceptibility. Int J Androl 31(2):112–117

    Article  CAS  PubMed  Google Scholar 

  18. Harris CA, Henttu P, Parker MG et al (1997) The estrogenic activity of phthalate esters in vitro. Environ Health Perspect 105(8):802–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fisher JS (2004) Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome. Reproduction 127(3):305–315

    Article  CAS  PubMed  Google Scholar 

  20. Meeker JD, Calafat AM, Hauser R (2009) Urinary metabolites of di(2-ethylhexyl) phthalate are associated with decreased steroid hormone levels in adult men. J Androl 30(3):287–297

    Article  CAS  PubMed  Google Scholar 

  21. Pan G, Hanaoka T, Yoshimura M et al (2006) Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114(11):1643–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Joensen UN, Frederiksen H, Jensen MB et al (2012) Phthalate excretion pattern and testicular function: a study of 881 healthy Danish men. Environ Health Perspect 120(10):1397–1403

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jonsson BA, Richthoff J, Rylander L et al (2005) Urinary phthalate metabolites and biomarkers of reproductive function in young men. Epidemiology 16(4):487–493

    Article  PubMed  Google Scholar 

  24. Balabanic D, Rupnik M, Klemencic AK (2011) Negative impact of endocrine-disrupting compounds on human reproductive health. Reprod Fertil Dev 23(3):403–416

    CAS  PubMed  Google Scholar 

  25. Zhou D, Wang H, Zhang J et al (2010) Di-n-butyl phthalate (DBP) exposure induces oxidative damage in testes of adult rats. Syst Biol Reprod Med 56(6):413–419

    Article  CAS  PubMed  Google Scholar 

  26. Tranfo G, Caporossi L, Paci E et al (2012) Urinary phthalate monoesters concentration in couples with infertility problems. Toxicol Lett 213(1):15–20

    Article  CAS  PubMed  Google Scholar 

  27. Wirth JJ, Rossano MG, Potter R et al (2008) A pilot study associating urinary concentrations of phthalate metabolites and semen quality. Syst Biol Reprod Med 54(3):143–154

    Article  CAS  PubMed  Google Scholar 

  28. Hauser R, Meeker JD, Singh NP et al (2007) DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod 22(3):688–695

    Article  CAS  PubMed  Google Scholar 

  29. Ernst E (2002) Toxic heavy metals and undeclared drugs in Asian herbal medicines. Trends Pharmacol Sci 23(3):136–139

    Article  CAS  PubMed  Google Scholar 

  30. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Article  CAS  PubMed  Google Scholar 

  31. Sengupta M, Deb I, Sharma GD et al (2013) Human sperm and other seminal constituents in male infertile patients from arsenic and cadmium rich areas of Southern Assam. Syst Biol Reprod Med 59(4):199–209

    Article  CAS  PubMed  Google Scholar 

  32. Selvaraju S, Nandi S, Gupta PS et al (2011) Effects of heavy metals and pesticides on buffalo (Bubalus bubalis) spermatozoa functions in vitro. Reprod Domest Anim 46(5):807–813

    Article  CAS  PubMed  Google Scholar 

  33. Lakshmana MK, Desiraju T, Raju TR (1993) Mercuric chloride-induced alterations of levels of noradrenaline, dopamine, serotonin and acetylcholine esterase activity in different regions of rat brain during postnatal development. Arch Toxicol 67(6):422–427

    Article  CAS  PubMed  Google Scholar 

  34. Danscher G, Horsted-Bindslev P, Rungby J (1990) Traces of mercury in organs from primates with amalgam fillings. Exp Mol Pathol 52(3):291–299

    Article  CAS  PubMed  Google Scholar 

  35. Godt J, Scheidig F, Grosse-Siestrup C et al (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Martynowicz H, Skoczynska A, Karczmarek-Wdowiak B et al (2005) Effects of cadmium on testis function. Med Pr 56(2):167–174

    CAS  PubMed  Google Scholar 

  37. Wirth JJ, Mijal RS (2010) Adverse effects of low level heavy metal exposure on male reproductive function. Syst Biol Reprod Med 56(2):147–167

    Article  CAS  PubMed  Google Scholar 

  38. Arabi M, Mohammadpour AA (2006) Adverse effects of cadmium on bull spermatozoa. Vet Res Commun 30(8):943–951

    Article  CAS  PubMed  Google Scholar 

  39. Xu DX, Shen HM, Zhu QX et al (2003) The associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutat Res 534(1–2):155–163

    Article  CAS  PubMed  Google Scholar 

  40. Wu HM, Lin-Tan DT, Wang ML et al (2012) Lead level in seminal plasma may affect semen quality for men without occupational exposure to lead. Reprod Biol Endocrinol 10:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Viskum S, Rabjerg L, Jorgensen PJ et al (1999) Improvement in semen quality associated with decreasing occupational lead exposure. Am J Ind Med 35(3):257–263

    Article  CAS  PubMed  Google Scholar 

  42. Eibensteiner L, Del Carpio Sanz A, Frumkin H et al (2005) Lead exposure and semen quality among traffic police in Arequipa, Peru. Int J Occup Environ Health 11(2):161–166

    Article  CAS  PubMed  Google Scholar 

  43. Hernandez-Ochoa I, Garcia-Vargas G, Lopez-Carrillo L et al (2005) Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reprod Toxicol 20(2):221–228

    Article  CAS  PubMed  Google Scholar 

  44. Pandey R, Singh SP (2002) Effects of molybdenum on fertility of male rats. Biometals 15(1):65–72

    Article  CAS  PubMed  Google Scholar 

  45. Meeker JD, Rossano MG, Protas B et al (2008) Cadmium, lead, and other metals in relation to semen quality: human evidence for molybdenum as a male reproductive toxicant. Environ Health Perspect 116(11):1473–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. J Toxicol Environ Health B Crit Rev 12(3):206–223

    Article  CAS  PubMed  Google Scholar 

  47. Meeker JD, Rossano MG, Protas B et al (2010) Environmental exposure to metals and male reproductive hormones: circulating testosterone is inversely associated with blood molybdenum. Fertil Steril 93(1):130–140

    Article  CAS  PubMed  Google Scholar 

  48. Lyubimov AV, Smith JA, Rousselle SD et al (2004) The effects of tetrathiomolybdate (TTM, NSC-714598) and copper supplementation on fertility and early embryonic development in rats. Reprod Toxicol 19(2):223–233

    Article  CAS  PubMed  Google Scholar 

  49. Zhai XW, Zhang YL, Qi Q et al (2013) Effects of molybdenum on sperm quality and testis oxidative stress. Syst Biol Reprod Med 59(5):251–255

    Article  CAS  PubMed  Google Scholar 

  50. Danadevi K, Rozati R, Reddy PP et al (2003) Semen quality of Indian welders occupationally exposed to nickel and chromium. Reprod Toxicol 17(4):451–456

    Article  CAS  PubMed  Google Scholar 

  51. Li H, Chen Q, Li S et al (2001) Effect of Cr(VI) exposure on sperm quality: human and animal studies. Ann Occup Hyg 45(7):505–511

    Article  CAS  PubMed  Google Scholar 

  52. Bonde JP, Ernst E (1992) Sex hormones and semen quality in welders exposed to hexavalent chromium. Hum Exp Toxicol 11(4):259–263

    Article  CAS  PubMed  Google Scholar 

  53. Bassey IE, Essien OE, Isong IKP, Udoh AE, Agbara GS (2013) Seminal plasma chromium, cadmium and lead levels in infertile men. J Med Sci 13:497–500

    Article  CAS  Google Scholar 

  54. Kumar S, Sathwara NG, Gautam AK et al (2005) Semen quality of industrial workers occupationally exposed to chromium. J Occup Health 47(5):424–430

    Article  CAS  PubMed  Google Scholar 

  55. Nair N, Bedwal S, Prasad S et al (2005) Short-term zinc deficiency in diet induces increased oxidative stress in testes and epididymis of rats. Indian J Exp Biol 43(9):786–794

    CAS  PubMed  Google Scholar 

  56. Aitken RJ, Roman SD (2008) Antioxidant systems and oxidative stress in the testes. Adv Exp Med Biol 636:154–171

    Article  CAS  PubMed  Google Scholar 

  57. Gregotti C, Di Nucci A, Costa LG et al (1992) Effects of thallium on primary cultures of testicular cells. J Toxicol Environ Health 36(1):59–69

    Article  CAS  PubMed  Google Scholar 

  58. Formigli L, Scelsi R, Poggi P et al (1986) Thallium-induced testicular toxicity in the rat. Environ Res 40(2):531–539

    Article  CAS  PubMed  Google Scholar 

  59. Hoffman RS (2000) Thallium poisoning during pregnancy: a case report and comprehensive literature review. J Toxicol Clin Toxicol 38(7):767–775

    Article  CAS  PubMed  Google Scholar 

  60. Meistrich ML (1984) Stage-specific sensitivity of spermatogonia to different chemotherapeutic drugs. Biomed Pharmacother 38(3):137–142

    CAS  PubMed  Google Scholar 

  61. Meistrich ML, Wilson G, Brown BW et al (1992) Impact of cyclophosphamide on long-term reduction in sperm count in men treated with combination chemotherapy for Ewing and soft tissue sarcomas. Cancer 70(11):2703–2712

    Article  CAS  PubMed  Google Scholar 

  62. Meistrich ML (2009) Male gonadal toxicity. Pediatr Blood Cancer 53(2):261–266

    Article  PubMed  PubMed Central  Google Scholar 

  63. Howell SJ, Shalet SM (2001) Testicular function following chemotherapy. Hum Reprod Update 7(4):363–369

    Article  CAS  PubMed  Google Scholar 

  64. Gerl A, Muhlbayer D, Hansmann G et al (2001) The impact of chemotherapy on Leydig cell function in long term survivors of germ cell tumors. Cancer 91(7):1297–1303

    Article  CAS  PubMed  Google Scholar 

  65. Petersen PM, Giwercman A, Skakkebaek NE et al (1998) Gonadal function in men with testicular cancer. Semin Oncol 25(2):224–233

    CAS  PubMed  Google Scholar 

  66. Howell SJ, Radford JA, Ryder WD et al (1999) Testicular function after cytotoxic chemotherapy: evidence of Leydig cell insufficiency. J Clin Oncol 17(5):1493–1498

    Article  CAS  PubMed  Google Scholar 

  67. Hughes CM, Lewis SE, McKelvey-Martin VJ et al (1996) A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod 2(8):613–619

    Article  CAS  PubMed  Google Scholar 

  68. De Iuliis GN, Newey RJ, King BV et al (2009) Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 4(7):e6446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kumar D, Salian SR, Kalthur G et al (2013) Semen abnormalities, sperm DNA damage and global hypermethylation in health workers occupationally exposed to ionizing radiation. PLoS One 8(7):e69927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Colpi GM, Contalbi GF, Nerva F et al (2004) Testicular function following chemo-radiotherapy. Eur J Obstet Gynecol Reprod Biol 113(Suppl 1):S2–S6

    Article  CAS  PubMed  Google Scholar 

  71. Knapp CA, Quinn GP, Murphy D (2011) Assessing the reproductive concerns of children and adolescents with cancer: challenges and potential solutions. J Adolesc Young Adult Oncol 1(1):31–35

    Article  PubMed  PubMed Central  Google Scholar 

  72. Stern C, Conyers R, Orme L et al (2013) Reproductive concerns of children and adolescents with cancer: challenges and potential solutions. Clin Oncol Adolesc Young Adult 3:63–78

    Google Scholar 

  73. Lee HR, Jeung EB, Cho MH et al (2013) Molecular mechanism(s) of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors. J Cell Mol Med 17(1):1–11

    Article  PubMed  CAS  Google Scholar 

  74. Gray LE Jr (1998) Xenoendocrine disrupters: laboratory studies on male reproductive effects. Toxicol Lett 102–103:331–335

    Article  PubMed  Google Scholar 

  75. Luccio-Camelo DC, Prins GS (2011) Disruption of androgen receptor signaling in males by environmental chemicals. J Steroid Biochem Mol Biol 127(1–2):74–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Defarge N, Mesnage R, Gress S et al (2012) Letter to the editor: developmental and reproductive outcomes of roundup and glyphosate in humans and animals. J Toxicol Environ Health B Crit Rev 15(7):433–437, author reply 438–440

    Article  CAS  PubMed  Google Scholar 

  77. Clair E, Mesnage R, Travert C et al (2012) A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels. Toxicol In Vitro 26(2):269–279

    Article  CAS  PubMed  Google Scholar 

  78. de Liz Oliveira Cavalli VL, Cattani D, Heinz Rieg CE et al (2013) Roundup disrupts male reproductive functions by triggering calcium-mediated cell death in rat testis and Sertoli cells. Free Radic Biol Med 65C:335–346

    Article  CAS  Google Scholar 

  79. Williams AL, Watson RE, DeSesso JM (2012) Developmental and reproductive outcomes in humans and animals after glyphosate exposure: a critical analysis. J Toxicol Environ Health B Crit Rev 15(1):39–96

    Article  CAS  PubMed  Google Scholar 

  80. Vonier PM, Crain DA, McLachlan JA et al (1996) Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ Health Perspect 104(12):1318–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grizard G, Ouchchane L, Roddier H et al (2007) In vitro alachlor effects on reactive oxygen species generation, motility patterns and apoptosis markers in human spermatozoa. Reprod Toxicol 23(1):55–62

    Article  CAS  PubMed  Google Scholar 

  82. Swan SH, Liu F, Overstreet JW et al (2007) Semen quality of fertile US males in relation to their mothers’ beef consumption during pregnancy. Hum Reprod 22(6):1497–1502

    Article  CAS  PubMed  Google Scholar 

  83. Lenzi A, Picardo M, Gandini L et al (1996) Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum Reprod Update 2(3):246–256

    Article  CAS  PubMed  Google Scholar 

  84. Bongalhardo DC, Leeson S, Buhr MM (2009) Dietary lipids differentially affect membranes from different areas of rooster sperm. Poult Sci 88(5):1060–1069

    Article  CAS  PubMed  Google Scholar 

  85. Afeiche M, Williams PL, Mendiola J et al (2013) Dairy food intake in relation to semen quality and reproductive hormone levels among physically active young men. Hum Reprod 28(8):2265–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Safarinejad MR, Safarinejad S (2012) The roles of omega-3 and omega-6 fatty acids in idiopathic male infertility. Asian J Androl 14(4):514–515

    Article  PubMed  PubMed Central  Google Scholar 

  87. Safarinejad MR, Hosseini SY, Dadkhah F et al (2010) Relationship of omega-3 and omega-6 fatty acids with semen characteristics, and anti-oxidant status of seminal plasma: a comparison between fertile and infertile men. Clin Nutr 29(1):100–105

    Article  CAS  PubMed  Google Scholar 

  88. Castellano CA, Audet I, Bailey JL et al (2010) Effect of dietary n-3 fatty acids (fish oils) on boar reproduction and semen quality. J Anim Sci 88(7):2346–2355

    Article  CAS  PubMed  Google Scholar 

  89. Yan L, Bai XL, Fang ZF et al (2013) Effect of different dietary omega-3/omega-6 fatty acid ratios on reproduction in male rats. Lipids Health Dis 12:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wathes DC, Abayasekara DR, Aitken RJ (2007) Polyunsaturated fatty acids in male and female reproduction. Biol Reprod 77(2):190–201

    Article  CAS  PubMed  Google Scholar 

  91. Zhu Q, Van Thiel DH, Gavaler JS (1997) Effects of ethanol on rat Sertoli cell function: studies in vitro and in vivo. Alcohol Clin Exp Res 21(8):1409–1417

    CAS  PubMed  Google Scholar 

  92. Muthusami KR, Chinnaswamy P (2005) Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil Steril 84(4):919–924

    Article  CAS  PubMed  Google Scholar 

  93. Gordon GG, Altman K, Southren AL et al (1976) Effect of alcohol (ethanol) administration on sex-hormone metabolism in normal men. N Engl J Med 295(15):793–797

    Article  CAS  PubMed  Google Scholar 

  94. Emanuele MA, Emanuele NV (1998) Alcohol’s effects on male reproduction. Alcohol Health Res World 22(3):195–201

    CAS  PubMed  Google Scholar 

  95. Gaur DS, Talekar MS, Pathak VP (2010) Alcohol intake and cigarette smoking: impact of two major lifestyle factors on male fertility. Indian J Pathol Microbiol 53(1):35–40

    Article  PubMed  Google Scholar 

  96. Ouko LA, Shantikumar K, Knezovich J et al (2009) Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IG-DMR in male gametes: implications for fetal alcohol spectrum disorders. Alcohol Clin Exp Res 33(9):1615–1627

    Article  CAS  PubMed  Google Scholar 

  97. Bielawski DM, Zaher FM, Svinarich DM et al (2002) Paternal alcohol exposure affects sperm cytosine methyltransferase messenger RNA levels. Alcohol Clin Exp Res 26(3):347–351

    Article  CAS  PubMed  Google Scholar 

  98. Practice Committee of the American Society for Reproductive M (2012) Smoking and infertility: a committee opinion. Fertil Steril 98(6):1400–1406

    Article  Google Scholar 

  99. Stephens WE, Calder A, Newton J (2005) Source and health implications of high toxic metal concentrations in illicit tobacco products. Environ Sci Technol 39(2):479–488

    Article  CAS  PubMed  Google Scholar 

  100. Al-Bader A, Omu AE, Dashti H (1999) Chronic cadmium toxicity to sperm of heavy cigarette smokers: immunomodulation by zinc. Arch Androl 43(2):135–140

    Article  CAS  PubMed  Google Scholar 

  101. Meri ZB, Irshid IB, Migdadi M et al (2013) Does cigarette smoking affect seminal fluid parameters? A comparative study. Oman Med J 28(1):12–15

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yamamoto Y, Isoyama E, Sofikitis N et al (1998) Effects of smoking on testicular function and fertilizing potential in rats. Urol Res 26(1):45–48

    Article  CAS  PubMed  Google Scholar 

  103. Sofikitis N, Miyagawa I, Dimitriadis D et al (1995) Effects of smoking on testicular function, semen quality and sperm fertilizing capacity. J Urol 154(3):1030–1034

    Article  CAS  PubMed  Google Scholar 

  104. Fraga CG, Motchnik PA, Wyrobek AJ et al (1996) Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res 351(2):199–203

    Article  PubMed  Google Scholar 

  105. Zenzes MT, Puy LA, Bielecki R et al (1999) Detection of benzo[a]pyrene diol epoxide-DNA adducts in embryos from smoking couples: evidence for transmission by spermatozoa. Mol Hum Reprod 5(2):125–131

    Article  CAS  PubMed  Google Scholar 

  106. Yu B, Qi Y, Liu D et al (2014) Cigarette smoking is associated with abnormal histone-to-protamine transition in human sperm. Fertil Steril 101(1):51–57.e51

    Article  CAS  PubMed  Google Scholar 

  107. Marczylo EL, Amoako AA, Konje JC et al (2012) Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 7(5):432–439

    Article  CAS  PubMed  Google Scholar 

  108. el Mohamed SA, Song WH, Oh SA et al (2010) The transgenerational impact of benzo(a)pyrene on murine male fertility. Hum Reprod 25(10):2427–2433

    Article  CAS  Google Scholar 

  109. Prakash N, Vijay KM, Sunilchandra U et al (2010) Evaluation of testicular toxicity following short-term exposure to cypermethrin in albino mice. Toxicol Int 17(1):18–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ige SF, Olaleye SB, Akhigbe RE et al (2012) Testicular toxicity and sperm quality following cadmium exposure in rats: ameliorative potentials of Allium cepa. J Hum Reprod Sci 5(1):37–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Creasy DM (2001) Pathogenesis of male reproductive toxicity. Toxicol Pathol 29(1):64–76

    Article  CAS  PubMed  Google Scholar 

  112. Misell LM, Holochwost D, Boban D et al (2006) A stable isotope-mass spectrometric method for measuring human spermatogenesis kinetics in vivo. J Urol 175(1):242–246, discussion 246

    Article  CAS  PubMed  Google Scholar 

  113. Clifton DK, Bremner WJ (1983) The effect of testicular x-irradiation on spermatogenesis in man - a comparison with the mouse. J Androl 4(6):387–392

    Article  CAS  PubMed  Google Scholar 

  114. Mangochi P (2010) Endocrine distrupting chemicals and human health: the plausibility of research results on DDT and reproductive health. Malawi Med J 22(2):42–45

    Article  PubMed  PubMed Central  Google Scholar 

  115. Dere E, Anderson LM, Coulson M et al (2013) SOT symposium highlight: translatable indicators of testicular toxicity: inhibin B, microRNAs, and sperm signatures. Toxicol Sci 136(2):265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Elkin ND, Piner JA, Sharpe RM (2010) Toxicant-induced leakage of germ cell-specific proteins from seminiferous tubules in the rat: relationship to blood-testis barrier integrity and prospects for biomonitoring. Toxicol Sci 117(2):439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Anton E, Krawetz SA (2012) Spermatozoa as biomarkers for the assessment of human male infertility and genotoxicity. Syst Biol Reprod Med 58(1):41–50

    Article  CAS  PubMed  Google Scholar 

  118. Amaral S, Amaral A, Ramalho-Santos J (2013) Aging and male reproductive function: a mitochondrial perspective. Front Biosci (Schol Ed) 5:181–197

    Article  Google Scholar 

  119. Swan SH, Brazil C, Drobnis EZ et al (2003) Geographic differences in semen quality of fertile U.S. males. Environ Health Perspect 111(4):414–420

    Article  PubMed  PubMed Central  Google Scholar 

  120. Vine MF, Margolin BH, Morrison HI et al (1994) Cigarette smoking and sperm density: a meta-analysis. Fertil Steril 61(1):35–43

    Article  CAS  PubMed  Google Scholar 

  121. Check JH, Epstein R, Long R (1991) Effect of time interval between ejaculations on semen parameters. Arch Androl 27(2):93–95

    Article  CAS  PubMed  Google Scholar 

  122. Laterza OF, Lim L, Garrett-Engele PW et al (2009) Plasma microRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55(11):1977–1983

    Article  CAS  PubMed  Google Scholar 

  123. Sakkas D, Alvarez JG (2010) Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 93(4):1027–1036

    Article  CAS  PubMed  Google Scholar 

  124. Meyer JN, Leung MCK, Rooney JP et al (2013) Mitochondria as a target of environmental toxicants. Toxicol Sci 134(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. De Mas P, Daudin M, Vincent MC et al (2001) Increased aneuploidy in spermatozoa from testicular tumour patients after chemotherapy with cisplatin, etoposide and bleomycin. Hum Reprod 16(6):1204–1208

    Article  PubMed  Google Scholar 

  126. Sendler E, Johnson GD, Mao S et al (2013) Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 41(7):4104–4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jodar M, Kalko S, Castillo J et al (2012) Differential RNAs in the sperm cells of asthenozoospermic patients. Hum Reprod 27(5):1431–1438

    Article  CAS  PubMed  Google Scholar 

  128. Platts AE, Dix DJ, Chemes HE et al (2007) Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Hum Mol Genet 16(7):763–773

    Article  CAS  PubMed  Google Scholar 

  129. Pacheco SE, Anderson LM, Sandrof MA et al (2012) Sperm mRNA transcripts are indicators of sub-chronic low dose testicular injury in the Fischer 344 rat. PLoS One 7(8):e44280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Amaral A, Castillo J, Ramalho-Santos J et al (2014) The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update 20(1):40–62

    Article  CAS  PubMed  Google Scholar 

  131. Auger J, Eustache F, Maceiras P et al (2010) Modified expression of several sperm proteins after chronic exposure to the antiandrogenic compound vinclozolin. Toxicol Sci 117(2):475–484

    Article  CAS  PubMed  Google Scholar 

  132. Maselli J, Hales BF, Chan P et al (2012) Exposure to bleomycin, etoposide, and cis-platinum alters rat sperm chromatin integrity and sperm head protein profile. Biol Reprod 86(5):166, 161–110

    Google Scholar 

  133. Li Y, Okumura K, Nomura S et al (2011) Oxidatively damaged proteins in the early stage of testicular toxicities in male rats by orally administered with a synthetic oestrogen, diethylstilbestrol. Reprod Toxicol 31(1):26–34

    Article  PubMed  CAS  Google Scholar 

  134. Martinez-Heredia J, de Mateo S, Vidal-Taboada JM et al (2008) Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod 23(4):783–791

    Article  CAS  PubMed  Google Scholar 

  135. Creasy DM, Ford GR, Gray TJ (1990) The morphogenesis of cyclohexylamine-induced testicular atrophy in the rat: in vivo and in vitro studies. Exp Mol Pathol 52(2):155–169

    Article  CAS  PubMed  Google Scholar 

  136. Creasy DM, Foster PM (1984) The morphological development of glycol ether-induced testicular atrophy in the rat. Exp Mol Pathol 40(2):169–176

    Article  CAS  PubMed  Google Scholar 

  137. Hess RA, Linder RE, Strader LF et al (1988) Acute effects and long-term sequelae of 1,3-dinitrobenzene on male reproduction in the rat II. Quantitative and qualitative histopathology of the testis. J Androl 9(5):327–342

    Article  CAS  PubMed  Google Scholar 

  138. Blackburn DM, Gray AJ, Lloyd SC et al (1988) A comparison of the effects of the three isomers of dinitrobenzene on the testis in the rat. Toxicol Appl Pharmacol 92(1):54–64

    Article  CAS  PubMed  Google Scholar 

  139. Kerr JB, Millar M, Maddocks S et al (1993) Stage-dependent changes in spermatogenesis and Sertoli cells in relation to the onset of spermatogenic failure following withdrawal of testosterone. Anat Rec 235(4):547–559

    Article  CAS  PubMed  Google Scholar 

  140. Chapin RE, Morgan KT, Bus JS (1983) The morphogenesis of testicular degeneration induced in rats by orally administered 2,5-hexanedione. Exp Mol Pathol 38(2):149–169

    Article  CAS  PubMed  Google Scholar 

  141. Lambrot R, Muczynski V, Lecureuil C et al (2009) Phthalates impair germ cell development in the human fetal testis in vitro without change in testosterone production. Environ Health Perspect 117(1):32–37

    Article  CAS  PubMed  Google Scholar 

  142. Ernst E (1990) Testicular toxicity following short-term exposure to tri- and hexavalent chromium: an experimental study in the rat. Toxicol Lett 51(3):269–275

    Article  CAS  PubMed  Google Scholar 

  143. Garg S, Doncel G, Chabra S et al (1994) Synergistic spermicidal activity of neem seed extract, reetha saponins and quinine hydrochloride. Contraception 50(2):185–190

    Article  CAS  PubMed  Google Scholar 

  144. Creasy DM (2011) Commentary on incidence and nature of testicular toxicity findings in pharmaceutical development survey: a pathologist’s perspective. Birth Defects Res B Dev Reprod Toxicol 92(6):508–510

    Article  CAS  PubMed  Google Scholar 

  145. Gray TJ (1986) Testicular toxicity in vitro: Sertoli-germ cell co-cultures as a model system. Food Chem Toxicol 24(6–7):601–605

    Article  CAS  PubMed  Google Scholar 

  146. Emanuele MA, Emanuele N (2001) Alcohol and the male reproductive system. Alcohol Res Health 25(4):282–287

    CAS  PubMed  Google Scholar 

  147. Sarkar R, Mohanakumar KP, Chowdhury M (2000) Effects of an organophosphate pesticide, quinalphos, on the hypothalamo-pituitary-gonadal axis in adult male rats. J Reprod Fertil 118(1):29–38

    Article  CAS  PubMed  Google Scholar 

  148. Sasaki JC, Chapin RE, Hall DG et al (2011) Incidence and nature of testicular toxicity findings in pharmaceutical development. Birth Defects Res B Dev Reprod Toxicol 92(6):511–525

    Article  CAS  PubMed  Google Scholar 

  149. Dineshkumar D, Selvaraju S, Parthipan S et al (2013) Effect of detoxified karanja (Pongamia spp.) cake on testicular architecture and semen production in ram lambs. Animal 7(10):1697–1703

    Article  CAS  PubMed  Google Scholar 

  150. Reader SCJ, Shingles C, Stonard MD (1991) Acute testicular toxicity of 1,3-dinitrobenzene and ethylene-glycol monomethyl ether in the rat - evaluation of biochemical effect markers and hormonal responses. Fundam Appl Toxicol 16(1):61–70

    Article  CAS  PubMed  Google Scholar 

  151. Matsuyama T, Niino N, Kiyosawa N et al (2011) Toxicogenomic investigation on rat testicular toxicity elicited by 1,3-dinitrobenzene. Toxicology 290(2–3):169–177

    Article  PubMed  CAS  Google Scholar 

  152. Shen RS, Lee IP (1984) Selected testicular enzymes as biochemical markers for procarbazine-induced testicular toxicity. Arch Toxicol 55(4):233–238

    Article  CAS  PubMed  Google Scholar 

  153. Yan LY, Yue DB, Luo HL et al (2010) Effect of Vitamin E supplementation on the enzymatic activity of selected markers in Aohan fine-wool sheep testis. Anim Reprod Sci 122(3–4):264–269

    Article  CAS  PubMed  Google Scholar 

  154. Turner KJ, McKinnell C, McLaren TT et al (1996) Detection of germ cell-derived proteins in testicular interstitial fluid: potential for monitoring spermatogenesis in vivo. J Androl 17(2):127–136

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would also like to thank many colleagues who criticaly reviewed this manuscript. apologize to others in the field that for space limitations we could not directly reference their contributions to the field.

Funding

S.S. is supported by a Cutting-edge Research Enhancement and Scientific Training Award, Department of Biotechnology, Government of India. Support from the Charlotte B. Failing Professorship to SAK is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Krawetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Selvaraju, S., Jodar, M., Krawetz, S.A. (2014). The Influence of Environmental Contaminants and Lifestyle on Testicular Damage and Male Fertility. In: Faqi, A. (eds) Developmental and Reproductive Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2014_13

Download citation

  • DOI: https://doi.org/10.1007/7653_2014_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7206-7

  • Online ISBN: 978-1-4939-7208-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics