Skip to main content

Compositions, Formulation, Pharmacology, Pharmacokinetics, and Toxicity of Topical, Periocular, and Intravitreal Ophthalmic Drugs

  • Protocol
  • First Online:
Ocular Pharmacology and Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The unique anatomy and physiology of the eye make it a highly protected organ. Drug delivery to the eye has become a major challenge to ocular pharmacologists and drug delivery scientists. Designing an effective therapy for ophthalmic disorders, especially for the chronic posterior segment diseases, has been considered a formidable task. Ocular static, dynamic, and precorneal barriers prevent administered drug from reaching the target site at therapeutic concentrations. Topical drops occupy a majority of the marketed ophthalmic products because of easy self-administration, cost-effectiveness, and most importantly patient compliance, whereas other routes of drug administration such as periocular and intravitreal routes require attention of a medical specialist to administer the dose. Drug delivery via periocular and intravitreal routes demonstrated better therapeutic outcomes in front and back of the eye diseases. Though intravitreal route appears to be promising to attain high drug concentrations in back of the eye tissues, however, this route is often limited by postdosing adverse effects such as retinal detachment and endophthalmitis. Periocular injections are associated with fairly high patient compliance relative to intravitreal injections. This chapter provides an overview of various routes of drug administration to anterior and posterior ocular tissues such as topical, periocular (subconjunctival, subtenon, peribulbar, retrobulbar, and juxtascleral), and intravitreal injections. These routes are currently widely recommended in clinics as effective treatment modalities for ocular pathologies. Further this chapter emphasizes drug product composition, dosage regimen, pharmacodynamic and pharmacokinetic profiles, and adverse effects associated with the use of selected drug products administered by these routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cunha-Vaz JG (1997) The blood-ocular barriers: past, present, and future. Documenta ophthalmologica. Adv Ophthalmol 93(1–2):149–157

    CAS  Google Scholar 

  2. Cholkar KPA, Vadlapudi AD, Mitra AK (2012) Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2(2):82–95

    Article  CAS  Google Scholar 

  3. Kumar S, Karki R, Meena M, Prakash T, Rajeswari T, Goli D (2011) Reduction in drop size of ophthalmic topical drop preparations and the impact of treatment. J Adv Pharm Technol Res 2(3):192–194

    Article  PubMed  Google Scholar 

  4. Lederer CM Jr, Harold RE (1986) Drop size of commercial glaucoma medications. Am J Ophthalmol 101(6):691–694

    PubMed  Google Scholar 

  5. Van Santvliet L, Ludwig A (2004) Determinants of eye drop size. Surv Ophthalmol 49(2):197–213

    Article  PubMed  Google Scholar 

  6. Schoenwald RD (1997) Ocular pharmacokinetics. In: Zimmerman TJ (ed) Textbook of ocular pharmacology. Lippincott-Raven Publishers, Philadelphia, PA, pp 119–138

    Google Scholar 

  7. Frenkel RE, Haji SA, La M, Frenkel MP, Reyes A (2010) A protocol for the retina surgeon’s safe initial intravitreal injections. Clin Ophthalmol 4:1279–1285

    Article  PubMed  Google Scholar 

  8. Marmor MF, Negi A, Maurice DM (1985) Kinetics of macromolecules injected into the subretinal space. Exp Eye Res 40(5):687–696

    Article  PubMed  CAS  Google Scholar 

  9. Raghava S, Hammond M, Kompella UB (2004) Periocular routes for retinal drug delivery. Expert Opin Drug Deliv 1(1):99–114

    Article  PubMed  Google Scholar 

  10. Roper-Hall MJ (ed) (1989) Anesthesia and akinesia for eye operations. Stallard’s eye surgery, 7th edn. UK Wright & Sons Ltd, Bristol, pp 44–63

    Google Scholar 

  11. Fatt WB (ed) (1992) Physiology of the eye: an introduction to the vegetative functions, 2nd edn. Butterworth-Heinemann Inc, Stoneham, pp 2–3

    Google Scholar 

  12. Canavan KS, Dark A, Garrioch MA (2003) Sub-Tenon’s administration of local anaesthetic: a review of the technique. Br J Anaesth 90(6):787–793

    Article  PubMed  CAS  Google Scholar 

  13. Kumar CM, Eid H, Dodds C (2011) Sub-Tenon’s anaesthesia: complications and their prevention. Eye 25(6):694–703

    Article  PubMed  CAS  Google Scholar 

  14. Jaffe NSJM, Jaffe GF, Craven L (eds) (1997) Cataract surgery and its complications, 6th edn. Mosby-Year Book, Inc., St. Louis, pp 20–25

    Google Scholar 

  15. Hamilton RC (2004) Retrobulbar and periocular anesthesia for cataract surgery. In: Steinert RF (ed.) Cataract surgery: techniques, complications and management. Elsevier Health Sciences, Philadelphia, PA. pp. 79–95

    Google Scholar 

  16. Stead S, Miller KM (2003) Anesthesia for ophthalmic surgery. In: Spaeth GL (ed) Ophthalmic surgery: principles and practice. W.B. Saunders Company, Philadelphia, PA, pp 15–25

    Google Scholar 

  17. Eisner G (1990) Eye surgery: an introduction to operative technique. Springer Limited, London

    Google Scholar 

  18. D’Amico DJ, Goldberg MF, Hudson H, Jerdan JA, Krueger DS, Luna SP et al (2003) Anecortave acetate as monotherapy for treatment of subfoveal neovascularization in age-related macular degeneration: twelve-month clinical outcomes. Ophthalmology 110(12):2372–2383, discussion 84–85

    Article  PubMed  Google Scholar 

  19. http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/019992s020lbl.pdf.

  20. Hendrix DV, Stuffle JL, Cox SK (2007) Pharmacokinetics of topically applied ciprofloxacin in equine tears. Vet Ophthalmol 10(6):344–347

    Article  PubMed  CAS  Google Scholar 

  21. Scheib SA, Garner WH (2004) Anti-inflammatory effects of topical ocular MAXIDEX administration to rabbits following vitrectomy or lensectomy. Exp Eye Res 79(6):893–902

    Article  PubMed  CAS  Google Scholar 

  22. http://www.allergan.com/assets/pdf/restasis_pi.pdf.

  23. Rao SN (2010) Topical cyclosporine 0.05% for the prevention of dry eye disease progression. J Ocul Pharmacol Ther 26(2):157–164

    Article  PubMed  CAS  Google Scholar 

  24. Acheampong AA, Shackleton M, Tang-Liu DD, Ding S, Stern ME, Decker R (1999) Distribution of cyclosporin A in ocular tissues after topical administration to albino rabbits and beagle dogs. Curr Eye Res 18(2):91–103

    Article  PubMed  CAS  Google Scholar 

  25. http://www.bauschlocal.com/zirgan/zirganPackageInsert.pdf

  26. Hoh HB, Hurley C, Claoue C, Viswalingham M, Easty DL, Goldschmidt P et al (1996) Randomised trial of ganciclovir and acyclovir in the treatment of herpes simplex dendritic keratitis: a multicentre study. Br J Ophthalmol 80(2):140–143

    Article  PubMed  CAS  Google Scholar 

  27. Vadlapudi AD, Vadlapatla RK, Mitra AK (2012) Current and emerging antivirals for the treatment of cytomegalovirus (CMV) retinitis: an update on recent patents. Recent Pat Antiinfect Drug Discov 7(1):8–18

    Article  PubMed  CAS  Google Scholar 

  28. Croxtall JD (2011) Ganciclovir ophthalmic gel 0.15%: in acute herpetic keratitis (dendritic ulcers). Drugs 71(5):603–610

    Article  PubMed  CAS  Google Scholar 

  29. Crumpacker CS (1996) Ganciclovir. New Engl J Med 335(10):721–729

    Article  PubMed  CAS  Google Scholar 

  30. Kaufman HE, Haw WH (2012) Ganciclovir ophthalmic gel 0.15%: safety and efficacy of a new treatment for herpes simplex keratitis. Curr Eye Res 37(7):654–660

    Article  PubMed  CAS  Google Scholar 

  31. Matthews T, Boehme R (1988) Antiviral activity and mechanism of action of ganciclovir. Rev Infect Dis 10(Suppl 3):S490–S494

    Article  PubMed  CAS  Google Scholar 

  32. http://www.bausch.com/en/ECP/Our-Products/Rx-Pharmaceuticals/Rx-Pharmaceuticals-ECP/Lotemax-Ointment-ECP

  33. Druzgala P, Hochhaus G, Bodor N (1991) Soft drugs–10. Blanching activity and receptor binding affinity of a new type of glucocorticoid: loteprednol etabonate. J Steroid Biochem Mol Biol 38(2):149–154

    Article  PubMed  CAS  Google Scholar 

  34. Bodor N, Loftsson T, Wu WM (1992) Metabolism, distribution, and transdermal permeation of a soft corticosteroid, loteprednol etabonate. Pharm Res 9(10):1275–1278

    Article  PubMed  CAS  Google Scholar 

  35. Druzgala P, Wu WM, Bodor N (1991) Ocular absorption and distribution of loteprednol etabonate, a soft steroid, in rabbit eyes. Curr Eye Res 10(10):933–937

    Article  PubMed  CAS  Google Scholar 

  36. Comstock TL, Paterno MR, Singh A, Erb T, Davis E (2011) Safety and efficacy of loteprednol etabonate ophthalmic ointment 0.5% for the treatment of inflammation and pain following cataract surgery. Clinical Ophthalmol 5:177–186

    CAS  Google Scholar 

  37. Samudre SS, Lattanzio FA Jr, Williams PB, Sheppard JD Jr (2004) Comparison of topical steroids for acute anterior uveitis. J Ocul Pharmacol Ther 20(6):533–547

    Article  PubMed  CAS  Google Scholar 

  38. Howes J, Novack GD (1998) Failure to detect systemic levels, and effects of loteprednol etabonate and its metabolite, PJ-91, following chronic ocular administration. J Ocul Pharmacol Ther 14(2):153–158

    Article  PubMed  CAS  Google Scholar 

  39. http://www.macugen.com/macugenUSPI.pdf

  40. Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5(2):123–132

    Article  PubMed  CAS  Google Scholar 

  41. Krzystolik MG, Afshari MA, Adamis AP, Gaudreault J, Gragoudas ES, Michaud NA et al (2002) Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Ophthalmol 120(3):338–346

    Article  PubMed  CAS  Google Scholar 

  42. Klein R (1999) Epidemiology. In: Berger JW, Fine SL, Maguire MG (eds) Age-related macular degeneration. Mosby, St. Louis, MO, pp 31–56

    Google Scholar 

  43. Gragoudas ES, Adamis AP, Cunningham ET, Feinsod M, Guyer DR (2004) Pegaptanib for neovascular age-related macular degeneration. N Eng J Med 351(27):2805–2816

    Article  CAS  Google Scholar 

  44. Mintz-Hittner HA (2012) Intravitreal pegaptanib as adjunctive treatment for stage 3+ ROP shown to be effective in a prospective, randomized, controlled multicenter clinical trial. Eur J Ophthalmol 22(5):685–686

    PubMed  Google Scholar 

  45. http://www.pfizer.ca/en/our_products/products/monograph/142

  46. Cunningham ET Jr, Adamis AP, Altaweel M, Aiello LP, Bressler NM, D’Amico DJ et al (2005) A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 112(10):1747–1757

    Article  PubMed  Google Scholar 

  47. Schouten JS, La Heij EC, Webers CA, Lundqvist IJ, Hendrikse F (2009) A systematic review on the effect of bevacizumab in exudative age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 247(1):1–11

    Article  PubMed  CAS  Google Scholar 

  48. Cleary CA, Jungkim S, Ravikumar K, Kelliher C, Acheson RW, Hickey-Dwyer M (2008) Intravitreal bevacizumab in the treatment of neovascular age-related macular degeneration, 6- and 9-month results. Eye 22(1):82–86

    Article  PubMed  CAS  Google Scholar 

  49. Pedersen R, Soliman W, Lund-Andersen H, Larsen M (2007) Treatment of choroidal neovascularization using intravitreal bevacizumab. Acta Ophthalmol Scand 85(5):526–533

    Article  PubMed  CAS  Google Scholar 

  50. Colquitt JL, Jones J, Tan SC, Takeda A, Clegg AJ, Price A (2008) Ranibizumab and pegaptanib for the treatment of age-related macular degeneration: a systematic review and economic evaluation. Health Technol Assess 12(16):iii–iv, ix-201

    PubMed  CAS  Google Scholar 

  51. El-Mollayess GM, Noureddine BN, Bashshur ZF (2011) Bevacizumab and neovascular age related macular degeneration: pathogenesis and treatment. Semin Ophthalmol 26(3):69–76

    Article  PubMed  Google Scholar 

  52. Axer-Siegel R, Herscovici Z, Hasanreisoglu M, Kremer I, Benjamini Y, Snir M (2009) Effect of intravitreal bevacizumab (avastin) on the growing rabbit eye. Curr Eye Res 34(8):660–665

    Article  PubMed  CAS  Google Scholar 

  53. Avery RL, Pearlman J, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA et al (2006) Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology 113(10):1695e1–1695e15

    Article  Google Scholar 

  54. Hernandez-Rojas ML, Quiroz-Mercado H, Dalma-Weiszhausz J, Fromow-Guerra J, Amaya-Espinosa A, Solis-Vivanco A et al (2007) Short-term effects of intravitreal bevacizumab for subfoveal choroidal neovascularization in pathologic myopia. Retina 27(6):707–712

    PubMed  Google Scholar 

  55. http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=3f045347-3e5e-4bbd-90f8-6c3100985ca5

  56. Dyer D, Callanan D, Bochow T, Abraham P, Lambert HM, Lee SY et al (2009) Clinical evaluation of the safety and efficacy of preservative-free triamcinolone (triesence [triamcinolone acetonide injectable suspension] 40 mg/ml) for visualization during pars plana vitrectomy. Retina 29(1):38–45

    Article  PubMed  Google Scholar 

  57. http://www.alcon.ca/pdf/Product_pharma/Product_pharma_triesence_eng.pdf

  58. Bardak Y, Cekic O, Tig SU (2006) Comparison of ICG-assisted ILM peeling and triamcinolone-assisted posterior vitreous removal in diffuse diabetic macular oedema. Eye 20(12):1357–1359

    Article  PubMed  CAS  Google Scholar 

  59. Peyman GA, Cheema R, Conway MD, Fang T (2000) Triamcinolone acetonide as an aid to visualization of the vitreous and the posterior hyaloid during pars plana vitrectomy. Retina 20(5):554–555

    Article  PubMed  CAS  Google Scholar 

  60. Clark AF (2007) Mechanism of action of the angiostatic cortisene anecortave acetate. Surv Ophthalmol 52(Suppl 1):S26–S34

    Article  PubMed  Google Scholar 

  61. Blei F, Wilson EL, Mignatti P, Rifkin DB (1993) Mechanism of action of angiostatic steroids: suppression of plasminogen activator activity via stimulation of plasminogen activator inhibitor synthesis. J Cell Physiol 155(3):568–578

    Article  PubMed  CAS  Google Scholar 

  62. DeFaller JM, Clark AF (2000) A new pharmacological treatment for angiogenesis. In: Taylor HR (ed) Pterygium. Kugler Pub, The Hague, Netherlands, pp 159–181

    Google Scholar 

  63. Penn JS, Rajaratnam VS, Collier RJ, Clark AF (2001) The effect of an angiostatic steroid on neovascularization in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 42(1):283–290

    PubMed  CAS  Google Scholar 

  64. BenEzra D, Griffin BW, Maftzir G, Sharif NA, Clark AF (1997) Topical formulations of novel angiostatic steroids inhibit rabbit corneal neovascularization. Invest Ophthalmol Vis Sci 38(10):1954–1962

    PubMed  CAS  Google Scholar 

  65. Liu C, Gu X, Wang W-H, Bingaman D (2005) Local delivery of anecortave acetate inhibits the expression of retinal IGF-1/IGF-1 receptor in the rat OIR model. Invest Ophthalmol Vis Sci 46(5):4135

    Google Scholar 

  66. Yang R, McCollum GW, Bingaman DP, Penn JS (2005) The effect of anecortave acetate on VEGF message and protein levels in hypoxic muller cells and in rat OIR. Invest Ophthalmol Vis Sci 46(5):4177

    Article  Google Scholar 

  67. Russell SR, Hudson HL, Jerdan JA (2007) Anecortave acetate for the treatment of exudative age-related macular degeneration–a review of clinical outcomes. Surv Ophthalmol 52(Suppl 1):S79–S90

    Article  PubMed  Google Scholar 

  68. Augustin A (2006) Anecortave acetate in the treatment of age-related macular degeneration. Clin Interv Aging 1(3):237–246

    Article  PubMed  CAS  Google Scholar 

  69. Stalmans I, Callanan DG, Dirks MS, Moster MR, Robin AL, Van Calster J et al (2012) Treatment of steroid-induced elevated intraocular pressure with anecortave acetate: a randomized clinical trial. J Ocul Pharmacol Ther 28(6):559–565

    PubMed  CAS  Google Scholar 

  70. Regillo CD, D'Amico DJ, Mieler WF, Schneebaum C, Beasley CH, Sullins GT (2007) Clinical safety profile of posterior juxtascleral depot administration of anecortave acetate 15 mg suspension as primary therapy or adjunctive therapy with photodynamic therapy for treatment of wet age-related macular degeneration. Surv Ophthalmol 52(Suppl 1):S70–S78

    Article  PubMed  Google Scholar 

  71. http://www.pocd.com.au/files/pdfs/OM_Autodrop_AutoSqueeze_POCDbrochure.pdf

Download references

Acknowledgements

This work was supported by NIH grants R01EY09171 and R01EY010659.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cholkar, K., Vadlapudi, A.D., Trinh, H.M., Mitra, A.K. (2013). Compositions, Formulation, Pharmacology, Pharmacokinetics, and Toxicity of Topical, Periocular, and Intravitreal Ophthalmic Drugs. In: Gilger, B. (eds) Ocular Pharmacology and Toxicology. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/7653_2013_10

Download citation

  • DOI: https://doi.org/10.1007/7653_2013_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-744-0

  • Online ISBN: 978-1-62703-745-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics