Skip to main content

Long-Term Intravital Imaging of the Cornea, Skin, and Hair Follicle by Multiphoton Microscope

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2150))

Abstract

Multiphoton microscopy allows long-term direct visualization of cells in live animals due to its low photodamage. When coupled with fluorescence protein targeting and second harmonic generation signals from natural collagen as contrast, multiphoton microscopy enables intravital tracing of cells while providing structural information from the extracellular matrix. Compared with conventional histological analysis, it can bring new insight into the cell dynamics in stem cell research. Here, we demonstrate cell imaging and tracing at a single cell resolution in the cornea, skin, and hair follicles using multiphoton microscopy in transgenic mice of which specific cell populations are tagged with fluorescent proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Egawa G, Nakamizo S, Natsuaki Y et al (2013) Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci Rep 3:1932

    Article  Google Scholar 

  2. Lefrancais E, Ortiz-Munoz G, Caudrillier A et al (2017) The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544:105–109

    Article  CAS  Google Scholar 

  3. Ritsma L, Ellenbroek SIJ, Zomer A et al (2014) Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507:362–365

    Article  CAS  Google Scholar 

  4. Rompolas P, Deschene ER, Zito G et al (2012) Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487:496–499

    Article  CAS  Google Scholar 

  5. Tsai TH, Jee SH, Dong CY et al (2009) Multiphoton microscopy in dermatological imaging. J Dermatol Sci 56:1–8

    Article  Google Scholar 

  6. Tsai TH, Lin SJ, Lee WR et al (2012) Visualizing radiofrequency-skin interaction using multiphoton microscopy in vivo. J Dermatol Sci 65:95–101

    Article  Google Scholar 

  7. Dondossola E, Alexander S, Holzapfel BM et al (2018) Intravital microscopy of osteolytic progression and therapy response of cancer lesions in the bone. Sci Transl Med 10(452): eaao5726

    Google Scholar 

  8. Kislin M, Sword J, Fomitcheva IV et al (2017) Reversible disruption of neuronal mitochondria by ischemic and traumatic injury revealed by quantitative two-photon imaging in the neocortex of anesthetized mice. J Neurosci 37:333–348

    Article  CAS  Google Scholar 

  9. Webster MT, Manor U, Lippincott-Schwartz J et al (2016) Intravital imaging reveals ghost fibers as architectural units guiding myogenic progenitors during regeneration. Cell Stem Cell 18:243–252

    Article  CAS  Google Scholar 

  10. Wu YF, Wang CY, Yang TL et al (2019) Intravital multiphoton microscopic imaging platform for ocular surface imaging. Exp Eye Res (In press) https://doi.org/10.1016/j.exer.2019.02.016

  11. Han M, Giese G, Bille J (2005) Second harmonic generation imaging of collagen fibrils in cornea and sclera. Opt Express 13:5791–5797

    Article  CAS  Google Scholar 

  12. Hsueh CM, Lo W, Chen WL et al (2009) Structural characterization of edematous corneas by forward and backward second harmonic generation imaging. Biophys J 97:1198–1205

    Article  CAS  Google Scholar 

  13. Lin SJ, Jee SH, Kuo CJ et al (2006) Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt Lett 31:2756–2758

    Article  Google Scholar 

  14. Lin SJ, Wu R Jr, Tan HY et al (2005) Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy. Opt Lett 30:2275–2277

    Article  Google Scholar 

  15. Lo W, Chen WL, Hsueh CM et al (2012) Fast Fourier transform-based analysis of second-harmonic generation image in keratoconic cornea. Invest Ophthalmol Vis Sci 53:3501–3507

    Article  Google Scholar 

  16. Tsai TH, Jee SH, Chan JY et al (2009) Visualizing laser-skin interaction in vivo by multiphoton microscopy. J Biomed Opt 14:024034

    Article  Google Scholar 

  17. Rendl M, Lewis L, Fuchs E (2005) Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol 3:e331

    Article  Google Scholar 

  18. Platt RJ, Chen S, Zhou Y et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455

    Article  CAS  Google Scholar 

  19. Muzumdar MD, Tasic B, Miyamichi K et al (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605

    Article  CAS  Google Scholar 

  20. Chen YT, Tsai MS, Yang TL et al (2012) R26R-GR: a Cre-activable dual fluorescent protein reporter mouse. PLoS One 7:e46171

    Article  CAS  Google Scholar 

  21. Pineda CM, Park S, Mesa KR et al (2015) Intravital imaging of hair follicle regeneration in the mouse. Nat Protoc 10:1116–1130

    Article  CAS  Google Scholar 

  22. Speier S, Nyqvist D, Kohler M et al (2008) Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye. Nat Protoc 3:1278–1286

    Article  CAS  Google Scholar 

  23. Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7:27–41

    Article  CAS  Google Scholar 

  24. Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Taiwan Bio-Development Foundation (TBF; to S.J Lin), Taiwan Ministry of Science and Technology (106-2627-M-002-034 to S.J Lin), Taiwan National Health Research Institutes (NHRI-EX107-10410EI to S.J Lin), Chang Gung Memorial Hospital (CMRPG3G1621 and CMRPG3D1691 to H.Y Tan), and Taiwan Ministry of Science and Technology (107-2314-B-182A-089 to H.Y Tan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jan Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, YF., Tan, HY., Lin, SJ. (2019). Long-Term Intravital Imaging of the Cornea, Skin, and Hair Follicle by Multiphoton Microscope. In: Turksen, K. (eds) Imaging and Tracking Stem Cells. Methods in Molecular Biology, vol 2150. Humana, New York, NY. https://doi.org/10.1007/7651_2019_227

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_227

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0626-1

  • Online ISBN: 978-1-0716-0627-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics