Skip to main content

Molecular Imaging of Therapeutic Effect of Mesenchymal Stem Cell-Derived Exosomes for Hindlimb Ischemia Treatment

  • Protocol
  • First Online:
Imaging and Tracking Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2150))

Abstract

Critical limb ischemia is a major cause of morbidity and mortality worldwide. Recently, many studies confirmed that MSC-derived exosomes (MSC-exosomes) had potential therapeutic effect to treat hindlimb ischemia through pro-angiogenesis. The therapeutic angiogenesis is a critical measurement to judge the beneficial effect of MSC-exosomes treatment. Formerly, the therapeutic effect of MSC-exosomes was usually evaluated through clinical assessment and histopathological examination. Here, we describe a strategy to evaluate the therapeutic effect of MSC-exosomes by monitoring the therapeutic angiogenesis with bioluminescent imaging in hindlimb ischemia mice models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shishehbor MH, White CJ, Gray BH et al (2016) Critical limb ischemia: an expert statement. J Am Coll Cardiol 68(18):2002–2015

    Article  Google Scholar 

  2. Inampudi C, Akintoye E, Ando T et al (2018) Angiogenesis in peripheral arterial disease. Curr Opin Pharmacol 39:60–67

    Article  CAS  Google Scholar 

  3. Kawarada O, Zen K, Hozawa K et al (2018) Contemporary critical limb ischemia: Asian multidisciplinary consensus statement on the collaboration between endovascular therapy and wound care. Cardiovasc Interv Ther 33(4):297–312

    Google Scholar 

  4. Parikh PP, Liu ZJ, Velazquez OC (2017) A molecular and clinical review of stem cell therapy in critical limb ischemia. Stem Cells Int 2017:3750829

    Article  Google Scholar 

  5. Lachmann N, Nikol S (2007) Therapeutic angiogenesis for peripheral artery disease: stem cell therapy. Vasa 36(4):241–251

    Article  CAS  Google Scholar 

  6. Carmeliet P, Baes M (2008) Metabolism and therapeutic angiogenesis. N Engl J Med 358(23):2511–2512

    Article  CAS  Google Scholar 

  7. Simons M, Ware JA (2003) Therapeutic angiogenesis in cardiovascular disease. Nat Rev Drug Discov 2(11):863–871

    Article  CAS  Google Scholar 

  8. Manuel GE, Johnson T, Liu D (2017) Therapeutic angiogenesis of exosomes for ischemic stroke. Int J Physiol Pathophysiol Pharmacol 9(6):188–191

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Annex BH (2013) Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol 10(7):387–396

    Article  CAS  Google Scholar 

  10. Liew A, O’Brien T (2012) Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther 3(4):28

    Article  Google Scholar 

  11. Qadura M, Terenzi DC, Verma S et al (2017) Cell therapy for critical limb ischemia: an integrated review of pre-clinical and clinical studies. Stem Cells 36(2):161–171

    Google Scholar 

  12. Desrochers LM, Antonyak MA, Cerione RA (2016) Extracellular vesicles: satellites of information transfer in cancer and stem cell biology. Dev Cell 37(4):301–309

    Article  CAS  Google Scholar 

  13. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  Google Scholar 

  14. Todorova D, Simoncini S, Lacroix R et al (2017) Extracellular vesicles in angiogenesis. Circ Res 120(10):1658–1673

    Article  CAS  Google Scholar 

  15. Rani S, Ryan AE, Griffin MD et al (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23(5):812–823

    Article  CAS  Google Scholar 

  16. Du W, Zhang K, Zhang S et al (2017) Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials 133:70–81

    Article  CAS  Google Scholar 

  17. Zhang K, Zhao X, Chen X et al (2018) Enhanced therapeutic effects of MSC-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment. ACS Appl Mater Interfaces 10(36):30081–30091

    Article  CAS  Google Scholar 

  18. Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95(4):343–353

    Article  CAS  Google Scholar 

  19. Olsson AK, Dimberg A, Kreuger J et al (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371

    Article  CAS  Google Scholar 

  20. Zhang N, Fang Z, Contag PR et al (2004) Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouse. Blood 103(2):617–626

    Article  CAS  Google Scholar 

  21. Mezzanotte L, van’t Root M, Karatas H et al (2017) In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol 35(7):640–652

    Article  CAS  Google Scholar 

  22. Badr CE, Tannous BA (2011) Bioluminescence imaging: progress and applications. Trends Biotechnol 29(12):624–633

    Article  CAS  Google Scholar 

  23. Negrin RS, Contag CH (2006) In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol 6(6):484–490

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Key R&D Program of China (2017YFA0103200), National Natural Science Foundation of China (81671734), Key Projects of Tianjin Science and Technology Support Program (18YFZCSY00010), Fundamental Research Funds for the Central Universities (63181114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongjin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, K., Li, Z. (2019). Molecular Imaging of Therapeutic Effect of Mesenchymal Stem Cell-Derived Exosomes for Hindlimb Ischemia Treatment. In: Turksen, K. (eds) Imaging and Tracking Stem Cells. Methods in Molecular Biology, vol 2150. Humana, New York, NY. https://doi.org/10.1007/7651_2019_221

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_221

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0626-1

  • Online ISBN: 978-1-0716-0627-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics