Skip to main content

Quantifying Senescence-Associated Phenotypes in Primary Multipotent Mesenchymal Stromal Cell Cultures

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2045))

Abstract

Cellular senescence is a tumor suppressor mechanism that removes potentially neoplastic cells from the proliferative pool. Senescent cells naturally accumulate with advancing age; however, excessive/aberrant accumulation of senescent cells can disrupt normal tissue function. Multipotent mesenchymal stromal cells (MSCs), which are actively evaluated as cell-based therapy, can undergo replicative senescence or stress-induced premature senescence. The molecular characterization of MSCs senescence can be useful not only for understanding the clinical correlations between MSCs biology and human age or age-related diseases but also for identifying competent MSCs for therapeutic applications. Because MSCs are involved in regulating the hematopoietic stem cell niche, and MSCs dysfunction has been implicated in age-related diseases, the identification and selective removal of senescent MSC may represent a potential therapeutic target. Cellular senescence is generally defined by senescence-associated (SA) permanent proliferation arrest (SAPA) accompanied by persistent DNA damage response (DDR) signaling emanating from persistent DNA lesions including damaged telomeres. Alongside SA cell cycle arrest and DDR signaling, a plethora of phenotypic hallmarks help define the overall senescent phenotype including a potent SA secretory phenotype (SASP) with many microenvironmental functions. Due to the complexity of the senescence phenotype, no single hallmark is alone capable of identifying senescent MSCs. This protocol highlights strategies to validate MSCs senescence through the measurements of several key SA hallmarks including lysosomal SA Beta-galactosidase activity (SA-βgal), cell cycle arrest, persistent DDR signaling, and the inflammatory SASP.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jackson L, Jones DR, Scotting P, Sottile V (2007) Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med 53(2):121–127

    Article  CAS  PubMed  Google Scholar 

  2. Tirino V, Paino F, d’Aquino R, Desiderio V, De Rosa A, Papaccio G (2011) Methods for the identification, characterization and banking of human DPSCs: current strategies and perspectives. Stem Cell Rev 7(3):608–615. https://doi.org/10.1007/s12015-011-9235-9

    Article  Google Scholar 

  3. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812. https://doi.org/10.1073/pnas.0937635100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aqmasheh S, Shamsasanjan K, Akbarzadehlaleh P, Pashoutan Sarvar D, Timari H (2017) Effects of mesenchymal stem cell derivatives on hematopoiesis and hematopoietic stem cells. Adv Pharm Bull 7(2):165–177. https://doi.org/10.15171/apb.2017.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O’Hagan-Wong K, Nadeau S, Carrier-Leclerc A, Apablaza F, Hamdy R, Shum-Tim D, Rodier F, Colmegna I (2016) Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells’ homeostasis. Oncotarget 7(12):13285–13296. https://doi.org/10.18632/oncotarget.7690

    Article  PubMed  PubMed Central  Google Scholar 

  6. Galipeau J, Sensebe L (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22(6):824–833. https://doi.org/10.1016/j.stem.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bobis S, Jarocha D, Majka M (2006) Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 44(4):215–230

    CAS  PubMed  Google Scholar 

  8. Jacobs SA, Roobrouck VD, Verfaillie CM, Van Gool SW (2013) Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunol Cell Biol 91(1):32–39. https://doi.org/10.1038/icb.2012.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rohban R, Pieber TR (2017) Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int 2017:5173732. https://doi.org/10.1155/2017/5173732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9–20. https://doi.org/10.1161/01.RES.0000135902.99383.6f

    Article  CAS  PubMed  Google Scholar 

  11. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y (2014) Immunobiology of mesenchymal stem cells. Cell Death Differ 21(2):216–225. https://doi.org/10.1038/cdd.2013.158

    Article  CAS  PubMed  Google Scholar 

  12. Kizilay Mancini O, Lora M, Cuillerier A, Shum-Tim D, Hamdy R, Burelle Y, Servant MJ, Stochaj U, Colmegna I (2018) Mitochondrial oxidative stress reduces the immunopotency of mesenchymal stromal cells in adults with coronary artery disease. Circ Res 122(2):255–266. https://doi.org/10.1161/CIRCRESAHA.117.311400

    Article  CAS  PubMed  Google Scholar 

  13. Kizilay Mancini O, Lora M, Shum-Tim D, Nadeau S, Rodier F, Colmegna I (2017) A proinflammatory secretome mediates the impaired immunopotency of human mesenchymal stromal cells in elderly patients with atherosclerosis. Stem Cells Transl Med 6(4):1132–1140. https://doi.org/10.1002/sctm.16-0221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  15. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198. https://doi.org/10.1038/nature02118

    Article  CAS  PubMed  Google Scholar 

  16. de Magalhaes JP, Passos JF (2018) Stress, cell senescence and organismal ageing. Mech Ageing Dev 170:2–9. https://doi.org/10.1016/j.mad.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  17. Chandeck C, Mooi WJ (2010) Oncogene-induced cellular senescence. Adv Anat Pathol 17(1):42–48. https://doi.org/10.1097/PAP.0b013e3181c66f4e

    Article  CAS  PubMed  Google Scholar 

  18. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556. https://doi.org/10.1083/jcb.201009094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Deursen JM (2014) The role of senescent cells in ageing. Nature 509(7501):439–446. https://doi.org/10.1038/nature13193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luo Y, Zou P, Zou J, Wang J, Zhou D, Liu L (2011) Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPKalpha dependent manner. Exp Gerontol 46(11):860–867. https://doi.org/10.1016/j.exger.2011.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Munro J, Barr NI, Ireland H, Morrison V, Parkinson EK (2004) Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp Cell Res 295(2):525–538. https://doi.org/10.1016/j.yexcr.2004.01.017

    Article  CAS  PubMed  Google Scholar 

  22. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362(6423):847–849. https://doi.org/10.1038/362847a0

    Article  CAS  PubMed  Google Scholar 

  23. Goldstein JC, Rodier F, Garbe JC, Stampfer MR, Campisi J (2005) Caspase-independent cytochrome c release is a sensitive measure of low-level apoptosis in cell culture models. Aging Cell 4(4):217–222. https://doi.org/10.1111/j.1474-9726.2005.00163.x

    Article  CAS  PubMed  Google Scholar 

  24. Ahmed AS, Sheng MH, Wasnik S, Baylink DJ, Lau KW (2017) Effect of aging on stem cells. World J Exp Med 7(1):1–10. https://doi.org/10.5493/wjem.v7.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, van Deursen JM (2017) Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16(10):718–735. https://doi.org/10.1038/nrd.2017.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gonzalez LC, Ghadaouia S, Martinez A, Rodier F (2016) Premature aging/senescence in cancer cells facing therapy: good or bad? Biogerontology 17(1):71–87. https://doi.org/10.1007/s10522-015-9593-9

    Article  CAS  PubMed  Google Scholar 

  27. Demaria M (2017) Senescent cells: new target for an old treatment? Mol Cell Oncol 4(3):e1299666. https://doi.org/10.1080/23723556.2017.1299666

    Article  PubMed  PubMed Central  Google Scholar 

  28. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236. https://doi.org/10.1038/nature10600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dolle ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733. https://doi.org/10.1016/j.devcel.2014.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22(1):78–83. https://doi.org/10.1038/nm.4010

    Article  CAS  PubMed  Google Scholar 

  31. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530(7589):184–189. https://doi.org/10.1038/nature16932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354(6311):472–477. https://doi.org/10.1126/science.aaf6659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, Stryeck S, Rijksen Y, van Willigenburg H, Feijtel DA, van der Pluijm I, Essers J, van Cappellen WA, van IWF, Houtsmuller AB, Pothof J, de Bruin RWF, Madl T, Hoeijmakers JHJ, Campisi J, de Keizer PLJ (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169(1):132–147.e116. https://doi.org/10.1016/j.cell.2017.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F, Koenig K, Le C, Mitin N, Deal AM, Alston S, Academia EC, Kilmarx S, Valdovinos A, Wang B, de Bruin A, Kennedy BK, Melov S, Zhou D, Sharpless NE, Muss H, Campisi J (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov 7(2):165–176. https://doi.org/10.1158/2159-8290.CD-16-0241

    Article  CAS  PubMed  Google Scholar 

  35. Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, Negley BA, Sfeir JG, Ogrodnik MB, Hachfeld CM, LeBrasseur NK, Drake MT, Pignolo RJ, Pirtskhalava T, Tchkonia T, Oursler MJ, Kirkland JL, Khosla S (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23(9):1072–1079. https://doi.org/10.1038/nm.4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, Chung JW, Kim DH, Poon Y, David N, Baker DJ, van Deursen JM, Campisi J, Elisseeff JH (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23(6):775–781. https://doi.org/10.1038/nm.4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG, Onken JL, Johnson KO, Verzosa GC, Langhi LGP, Weigl M, Giorgadze N, LeBrasseur NK, Miller JD, Jurk D, Singh RJ, Allison DB, Ejima K, Hubbard GB, Ikeno Y, Cubro H, Garovic VD, Hou X, Weroha SJ, Robbins PD, Niedernhofer LJ, Khosla S, Tchkonia T, Kirkland JL (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24(8):1246–1256. https://doi.org/10.1038/s41591-018-0092-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD (2017) The clinical potential of senolytic drugs. J Am Geriatr Soc 65(10):2297–2301. https://doi.org/10.1111/jgs.14969

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O’Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14(4):644–658. https://doi.org/10.1111/acel.12344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d’Adda di Fagagna F (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14(4):355–365. https://doi.org/10.1038/ncb2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppe JP, Campeau E, Beausejour CM, Kim SH, Davalos AR, Campisi J (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124(Pt 1):68–81. https://doi.org/10.1242/jcs.071340

    Article  CAS  PubMed  Google Scholar 

  42. Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28(6):436–453. https://doi.org/10.1016/j.tcb.2018.02.001

    Article  CAS  PubMed  Google Scholar 

  43. Turinetto V, Vitale E, Giachino C (2016) Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci 17(7). https://doi.org/10.3390/ijms17071164

    Article  PubMed Central  Google Scholar 

  44. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213. https://doi.org/10.1371/journal.pone.0002213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Legzdina D, Romanauska A, Nikulshin S, Kozlovska T, Berzins U (2016) Characterization of senescence of culture-expanded human adipose-derived mesenchymal stem cells. Int J Stem Cells 9(1):124–136. https://doi.org/10.15283/ijsc.2016.9.1.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deryabin PI, Borodkina AV, Nikolsky NN, Burova EB (2015) Relationship between p53/p21/Rb and mapk signaling pathways in human endometrium-derived stem cells under oxidative stress. Tsitologiia 57(11):788–795

    CAS  PubMed  Google Scholar 

  47. Medeiros Tavares Marques JC, Cornelio DA, Nogueira Silbiger V, Ducati Luchessi A, de Souza S, Batistuzzo de Medeiros SR (2017) Identification of new genes associated to senescent and tumorigenic phenotypes in mesenchymal stem cells. Sci Rep 7(1):17837. https://doi.org/10.1038/s41598-017-16224-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Contrepois K, Coudereau C, Benayoun BA, Schuler N, Roux PF, Bischof O, Courbeyrette R, Carvalho C, Thuret JY, Ma Z, Derbois C, Nevers MC, Volland H, Redon CE, Bonner WM, Deleuze JF, Wiel C, Bernard D, Snyder MP, Rube CE, Olaso R, Fenaille F, Mann C (2017) Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nat Commun 8:14995. https://doi.org/10.1038/ncomms14995

    Article  PubMed  PubMed Central  Google Scholar 

  49. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716

    Article  CAS  PubMed  Google Scholar 

  50. Laberge RM, Adler D, DeMaria M, Mechtouf N, Teachenor R, Cardin GB, Desprez PY, Campisi J, Rodier F (2013) Mitochondrial DNA damage induces apoptosis in senescent cells. Cell Death Dis 4:e727. https://doi.org/10.1038/cddis.2013.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11(8):973–979. https://doi.org/10.1038/ncb1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4(12):1798–1806. https://doi.org/10.1038/nprot.2009.191

    Article  CAS  PubMed  Google Scholar 

  53. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barnum KJ, O’Connell MJ (2014) Cell cycle regulation by checkpoints. Methods Mol Biol 1170:29–40. https://doi.org/10.1007/978-1-4939-0888-2_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qian Y, Chen X (2013) Senescence regulation by the p53 protein family. Methods Mol Biol 965:37–61. https://doi.org/10.1007/978-1-62703-239-1_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pani G, Colavitti R, Bedogni B, Anzevino R, Borrello S, Galeotti T (2000) A redox signaling mechanism for density-dependent inhibition of cell growth. J Biol Chem 275(49):38891–38899. https://doi.org/10.1074/jbc.M007319200

    Article  CAS  PubMed  Google Scholar 

  57. McHugh D, Gil J (2018) Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol 217(1):65–77. https://doi.org/10.1083/jcb.201708092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8(7):512–522. https://doi.org/10.1038/nrc2440

    Article  CAS  PubMed  Google Scholar 

  59. Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25(5):409–433. https://doi.org/10.1101/gad.2021311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuo LJ, Yang LX (2008) Gamma-H2AX—a novel biomarker for DNA double-strand breaks. In Vivo 22(3):305–309

    CAS  PubMed  Google Scholar 

  61. Rappold I, Iwabuchi K, Date T, Chen J (2001) Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J Cell Biol 153(3):613–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Malaquin N, Martinez A, Rodier F (2016) Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 82:39–49. https://doi.org/10.1016/j.exger.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  63. Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Malaquin N, Carrier-Leclerc A, Dessureault M, Rodier F (2015) DDR-mediated crosstalk between DNA-damaged cells and their microenvironment. Front Genet 6:94. https://doi.org/10.3389/fgene.2015.00094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, Kogan SC, Lowe SW (2011) Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev 25(20):2125–2136. https://doi.org/10.1101/gad.17276711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sepulveda JC, Tome M, Fernandez ME, Delgado M, Campisi J, Bernad A, Gonzalez MA (2014) Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells 32(7):1865–1877. https://doi.org/10.1002/stem.1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Povirk LF (1996) DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: bleomycin, neocarzinostatin and other enediynes. Mutat Res 355(1-2):71–89

    Article  PubMed  Google Scholar 

  68. Chankova SG, Dimova E, Dimitrova M, Bryant PE (2007) Induction of DNA double-strand breaks by zeocin in Chlamydomonas reinhardtii and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response. Radiat Environ Biophys 46(4):409–416. https://doi.org/10.1007/s00411-007-0123-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Rodier and Dr. Colmegna’s laboratory members for their valuable comments and discussions. This effort was supported by the Institut du cancer de Montréal (ICM to FR), the Israel Cancer Research Foundation (ICRF to FR), and the Canadian Institute for Health Research (CIHR MOP114962 to FR and MOP287233 to IC/FR). FR is a researcher at CRCHUM/ICM, which receives support from the Fonds de recherche du Québec – Santé (FRQS). FR is supported by a FRQS junior I–II career awards (22624, 33070). IC is a Chercheur Boursier Senior from FRQS. SN is supported by a FRQS PhD scholarship and a Canderel-ICM excellence award.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nadeau, S., Cheng, A., Colmegna, I., Rodier, F. (2019). Quantifying Senescence-Associated Phenotypes in Primary Multipotent Mesenchymal Stromal Cell Cultures. In: Turksen, K. (eds) Stem Cells and Aging . Methods in Molecular Biology, vol 2045. Humana, New York, NY. https://doi.org/10.1007/7651_2019_217

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_217

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9712-1

  • Online ISBN: 978-1-4939-9713-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics