Advertisement

Reconstruction of Regenerative Stem Cell Niche by Cell Aggregate Engineering

  • Bing-Dong Sui
  • Bin Zhu
  • Cheng-Hu Hu
  • Pan Zhao
  • Yan JinEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2002)

Abstract

The niche plays critical roles in regulating functionality and determining regenerative outcomes of stem cells, for which establishment of favorable microenvironments is in demand in translational medicine. In recent years, the cell aggregate technology has shown immense potential to reconstruct a beneficial topical niche for stem cell-mediated regeneration, which has been recognized as a promising concept for high-density stem cell delivery with preservation of the self-produced, tissue-specific extracellular matrix microenvironments. Here, we describe the basic methodology of stem cell aggregate-based niche engineering and quality check indexes prior to application.

Keywords

Cell aggregate Extracellular matrix Microenvironment Niche engineering Stem cells Tissue regeneration 

Notes

Acknowledgments

This work was supported by grants from the National Key Research and Development Program of China (2016YFC1102900 and 2016YFC1101400), the General Program of National Natural Science Foundation of China (81570937 and 81470710), and the State Scholarship Fund of China (201603170205).

References

  1. 1.
    Sui BD, Hu CH, Liu AQ, Zheng CX, Xuan K, Jin Y (2017) Stem cell-based bone regeneration in diseased microenvironments: challenges and solutions. Biomaterials.  https://doi.org/10.1016/j.biomaterials.2017.10.046 CrossRefGoogle Scholar
  2. 2.
    Paschos NK, Brown WE, Eswaramoorthy R, Hu JC, Athanasiou KA (2015) Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med 9(5):488–503.  https://doi.org/10.1002/term.1870 CrossRefPubMedGoogle Scholar
  3. 3.
    Sui BD, Hu CH, Zheng CX, Shuai Y, He XN, Gao PP, Zhao P, Li M, Zhang XY, He T, Xuan K, Jin Y (2017) Recipient glycemic micro-environments govern therapeutic effects of mesenchymal stem cell infusion on osteopenia. Theranostics 7(5):1225–1244.  https://doi.org/10.7150/thno.18181 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reilly GC, Engler AJ (2010) Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43(1):55–62.  https://doi.org/10.1016/j.jbiomech.2009.09.009 CrossRefPubMedGoogle Scholar
  5. 5.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689.  https://doi.org/10.1016/j.cell.2006.06.044 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhu B, Liu W, Zhang H, Zhao X, Duan Y, Li D, Jin Y (2017) Tissue-specific composite cell aggregates drive periodontium tissue regeneration by reconstructing a regenerative microenvironment. J Tissue Eng Regen Med 11(6):1792–1805.  https://doi.org/10.1002/term.2077 CrossRefPubMedGoogle Scholar
  7. 7.
    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143.  https://doi.org/10.1126/science.1116995 CrossRefPubMedGoogle Scholar
  8. 8.
    Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9(6):518–526.  https://doi.org/10.1038/nmat2732 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sui BD, Hu CH, Zheng CX, Jin Y (2016) Microenvironmental views on mesenchymal stem cell differentiation in aging. J Dent Res 95(12):1333–1340.  https://doi.org/10.1177/0022034516653589 CrossRefPubMedGoogle Scholar
  10. 10.
    Atala A, Kasper FK, Mikos AG (2012) Engineering complex tissues. Sci Transl Med 4(160):160rv112.  https://doi.org/10.1126/scitranslmed.3004890 CrossRefGoogle Scholar
  11. 11.
    Chen G, Chen J, Yang B, Li L, Luo X, Zhang X, Feng L, Jiang Z, Yu M, Guo W, Tian W (2015) Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials 52:56–70.  https://doi.org/10.1016/j.biomaterials.2015.02.011 CrossRefPubMedGoogle Scholar
  12. 12.
    Prewitz MC, Seib FP, von Bonin M, Friedrichs J, Stissel A, Niehage C, Muller K, Anastassiadis K, Waskow C, Hoflack B, Bornhauser M, Werner C (2013) Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nat Methods 10(8):788–794.  https://doi.org/10.1038/nmeth.2523 CrossRefPubMedGoogle Scholar
  13. 13.
    An Y, Wei W, Jing H, Ming L, Liu S, Jin Y (2015) Bone marrow mesenchymal stem cell aggregate: an optimal cell therapy for full-layer cutaneous wound vascularization and regeneration. Sci Rep 5:17036.  https://doi.org/10.1038/srep17036 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Iwata T, Washio K, Yoshida T, Ishikawa I, Ando T, Yamato M, Okano T (2015) Cell sheet engineering and its application for periodontal regeneration. J Tissue Eng Regen Med 9(4):343–356.  https://doi.org/10.1002/term.1785 CrossRefPubMedGoogle Scholar
  15. 15.
    Shang F, Ming L, Zhou Z, Yu Y, Sun J, Ding Y, Jin Y (2014) The effect of licochalcone A on cell-aggregates ECM secretion and osteogenic differentiation during bone formation in metaphyseal defects in ovariectomized rats. Biomaterials 35(9):2789–2797.  https://doi.org/10.1016/j.biomaterials.2013.12.061 CrossRefPubMedGoogle Scholar
  16. 16.
    Shang F, Liu S, Ming L, Tian R, Jin F, Ding Y, Zhang Y, Zhang H, Deng Z, Jin Y (2017) Human umbilical cord MSCs as new cell sources for promoting periodontal regeneration in inflammatory periodontal defect. Theranostics 7(18):4370–4382.  https://doi.org/10.7150/thno.19888 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu Y, Ming L, Luo H, Liu W, Zhang Y, Liu H, Jin Y (2013) Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Biomaterials 34(38):9998–10006.  https://doi.org/10.1016/j.biomaterials.2013.09.040 CrossRefPubMedGoogle Scholar
  18. 18.
    Dang PN, Solorio LD, Alsberg E (2014) Driving cartilage formation in high-density human adipose-derived stem cell aggregate and sheet constructs without exogenous growth factor delivery. Tissue Eng Part A 20(23–24):3163–3175.  https://doi.org/10.1089/ten.TEA.2012.0551 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sun J, Dong Z, Zhang Y, He X, Fei D, Jin F, Yuan L, Li B, Jin Y (2017) Osthole improves function of periodontitis periodontal ligament stem cells via epigenetic modification in cell sheets engineering. Sci Rep 7(1):5254.  https://doi.org/10.1038/s41598-017-05762-7 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shuai Y, Liao L, Su X, Yu Y, Shao B, Jing H, Zhang X, Deng Z, Jin Y (2016) Melatonin treatment improves mesenchymal stem cells therapy by preserving stemness during long-term in vitro expansion. Theranostics 6(11):1899–1917.  https://doi.org/10.7150/thno.15412 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X, Yang R, Chen W, Wang S, Shi S (2011) Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha. Nat Med 17(12):1594–1601.  https://doi.org/10.1038/nm.2542 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sui B, Hu C, Jin Y (2016) Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells. Biogerontology 17(2):267–279.  https://doi.org/10.1007/s10522-015-9609-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Hu CH, Sui BD, Du FY, Shuai Y, Zheng CX, Zhao P, Yu XR, Jin Y (2017) miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep 7:43191.  https://doi.org/10.1038/srep43191 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chen N, Sui BD, Hu CH, Cao J, Zheng CX, Hou R, Yang ZK, Zhao P, Chen Q, Yang QJ, Jin Y, Jin F (2016) microRNA-21 contributes to orthodontic tooth movement. J Dent Res 95(12):1425–1433.  https://doi.org/10.1177/0022034516657043 CrossRefPubMedGoogle Scholar
  25. 25.
    Sui B, Hu C, Liao L, Chen Y, Zhang X, Fu X, Zheng C, Li M, Wu L, Zhao X, Jin Y (2016) Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis. Sci Rep 6:30186.  https://doi.org/10.1038/srep30186 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sui B, Hu C, Zhang X, Zhao P, He T, Zhou C, Qiu X, Chen N, Zhao X, Jin Y (2016) Allogeneic mesenchymal stem cell therapy promotes osteoblastogenesis and prevents glucocorticoid-induced osteoporosis. Stem Cells Transl Med 5(9):1238–1246.  https://doi.org/10.5966/sctm.2015-0347 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhao P, Sui BD, Liu N, Lv YJ, Zheng CX, Lu YB, Huang WT, Zhou CH, Chen J, Pang DL, Fei DD, Xuan K, Hu CH, Jin Y (2017) Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application. Aging Cell 16(5):1083–1093.  https://doi.org/10.1111/acel.12635 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2018

Authors and Affiliations

  • Bing-Dong Sui
    • 1
    • 2
  • Bin Zhu
    • 1
    • 2
  • Cheng-Hu Hu
    • 1
    • 2
    • 3
  • Pan Zhao
    • 1
    • 2
  • Yan Jin
    • 1
    • 2
    • 3
    Email author
  1. 1.State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of StomatologyFourth Military Medical UniversityXi’anChina
  2. 2.Research and Development Center for Tissue EngineeringFourth Military Medical UniversityXi’anChina
  3. 3.Xi’an Institute of Tissue Engineering and Regenerative MedicineXi’anChina

Personalised recommendations