Advertisement

Ex Vivo Visualization and Analysis of the Muscle Stem Cell Niche

  • Aviva J. Goel
  • Robert S. KraussEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2002)

Abstract

Adult skeletal muscle stem cells, termed satellite cells, are essential for regenerating muscle after tissue damage. Satellite cells are located in a specialized microenvironment between muscle fibers and their surrounding basal lamina. This local niche serves as a compartment to preserve satellite cell function and provides signals that facilitate the rapid response to injury. Visualization of this local niche enables the elucidation of such niche-derived signals. Here, we describe techniques for isolating single myofibers with their associated satellite cells for ex vivo visualization and analysis of an intact muscle stem cell niche.

Keywords

Cadherin Catenin Cell adhesion Integrin Muscle Niche Quiescence Regeneration Satellite cell Stem cell 

Notes

Acknowledgments

We thank D. Cornelison, A. Brack, and C. Crist for gifts of reagents and helpful advice. This work was supported by NIH grants AR046207 and AR070231 to R.S.K. and by the Tisch Cancer Institute at Mount Sinai NIH P30 CA196521 for support of work on the Mount Sinai Microscopy CoRE.

References

  1. 1.
    Brack AS, Rando TA (2012) Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10(5):504–514.  https://doi.org/10.1016/j.stem.2012.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA (2015) Satellite cells and skeletal muscle regeneration. Compr Physiol 5(3):1027–1059.  https://doi.org/10.1002/cphy.c140068 CrossRefPubMedGoogle Scholar
  3. 3.
    Dumont NA, Wang YX, Rudnicki MA (2015) Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142(9):1572–1581.  https://doi.org/10.1242/dev.114223 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shavlakadze T, McGeachie J, Grounds MD (2010) Delayed but excellent myogenic stem cell response of regenerating geriatric skeletal muscles in mice. Biogerontology 11(3):363–376.  https://doi.org/10.1007/s10522-009-9260-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490(7420):355–360.  https://doi.org/10.1038/nature11438 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302(5650):1575–1577.  https://doi.org/10.1126/science.1087573 CrossRefPubMedGoogle Scholar
  7. 7.
    Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12(2):153–163.  https://doi.org/10.1038/ncb2015 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dimmeler S, Ding S, Rando TA, Trounson A (2014) Translational strategies and challenges in regenerative medicine. Nat Med 20(8):814–821.  https://doi.org/10.1038/nm.3627 CrossRefPubMedGoogle Scholar
  9. 9.
    Lane SW, Williams DA, Watt FM (2014) Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32(8):795–803.  https://doi.org/10.1038/nbt.2978 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Goel AJ, Rieder MK, Arnold HH, Radice GL, Krauss RS (2017) Niche cadherins control the quiescence-to-activation transition in muscle stem cells. Cell Rep 21(8):2236–2250.  https://doi.org/10.1016/j.celrep.2017.10.102 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Krauss RS, Joseph GA, Goel AJ (2017) Keep your friends close: cell-cell contact and skeletal myogenesis. Cold Spring Harb Perspect Biol 9(2).  https://doi.org/10.1101/cshperspect.a029298 CrossRefGoogle Scholar
  12. 12.
    Rozo M, Li L, Fan CM (2016) Targeting beta1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med 22(8):889–896.  https://doi.org/10.1038/nm.4116 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2(1):22–31.  https://doi.org/10.1016/j.stem.2007.12.012 CrossRefPubMedGoogle Scholar
  14. 14.
    Pasut A, Jones AE, Rudnicki MA (2013) Isolation and culture of individual myofibers and their satellite cells from adult skeletal muscle. J Vis Exp 73:e50074.  https://doi.org/10.3791/50074 CrossRefGoogle Scholar
  15. 15.
    Vogler TO, Gadek KE, Cadwallader AB, Elston TL, Olwin BB (2016) Isolation, culture, functional assays, and immunofluorescence of myofiber-associated satellite cells. Methods Mol Biol 1460:141–162.  https://doi.org/10.1007/978-1-4939-3810-0_11 CrossRefPubMedGoogle Scholar
  16. 16.
    Moyle LA, Zammit PS (2014) Isolation, culture and immunostaining of skeletal muscle fibres to study myogenic progression in satellite cells. Methods Mol Biol 1210:63–78.  https://doi.org/10.1007/978-1-4939-1435-7_6 CrossRefPubMedGoogle Scholar
  17. 17.
    Kollu S, Abou-Khalil R, Shen C, Brack AS (2015) The spindle assembly checkpoint safeguards genomic integrity of skeletal muscle satellite cells. Stem Cell Reports 4(6):1061–1074.  https://doi.org/10.1016/j.stemcr.2015.04.006 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2018

Authors and Affiliations

  1. 1.Department of Cell, Developmental, and Regenerative BiologyIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations