Skip to main content

Autophagy in Zebrafish Extraocular Muscle Regeneration

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1854))

Abstract

Zebrafish extraocular muscles regenerate after severe injury. Injured myocytes dedifferentiate to a mesenchymal progenitor state and reenter the cell cycle to proliferate, migrate, and redifferentiate into functional muscles. A dedifferentiation process that begins with a multinucleated syncytial myofiber filled with sarcomeres and ends with proliferating mononucleated myoblasts must include significant remodeling of the protein machinery and organelle content of the cell. It turns out that autophagy plays a key role early in this process, to degrade the sarcomeres as well as the excess nuclei of the syncytial multinucleated myofibers. Because of the robustness of the zebrafish reprogramming process, and its relative synchrony, it can serve as a useful in vivo model for studying the biology of autophagy. In this chapter, we describe the surgical muscle injury model as well as the experimental protocols for assessing and manipulating autophagy activation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M (1997) Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377(4):577–595

    Article  CAS  PubMed  Google Scholar 

  2. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190. https://doi.org/10.1126/science.1077857

    Article  PubMed  CAS  Google Scholar 

  3. Raya A, Koth CM, Buscher D, Kawakami Y, Itoh T, Raya RM, Sternik G, Tsai HJ, Rodriguez-Esteban C, Izpisua-Belmonte JC (2003) Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci U S A 100(Suppl 1):11889–11895. https://doi.org/10.1073/pnas.1834204100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hitchcock PF, Raymond PA (2004) The teleost retina as a model for developmental and regeneration biology. Zebrafish 1(3):257–271. https://doi.org/10.1089/zeb.2004.1.257

    Article  PubMed  Google Scholar 

  5. Goldman D (2014) Muller glial cell reprogramming and retina regeneration. Nat Rev Neurosci 15(7):431–442. https://doi.org/10.1038/nrn3723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Poss KD, Shen J, Nechiporuk A, McMahon G, Thisse B, Thisse C, Keating MT (2000) Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol 222(2):347–358. https://doi.org/10.1006/dbio.2000.9722

    Article  PubMed  CAS  Google Scholar 

  7. Pfefferli C, Jazwinska A (2015) The art of fin regeneration in zebrafish. Regeneration (Oxf) 2(2):72–83. https://doi.org/10.1002/reg2.33

    Article  Google Scholar 

  8. Kan NG, Junghans D, Izpisua Belmonte JC (2009) Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy. FASEB J 23(10):3516–3525. https://doi.org/10.1096/fj.09-131730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Berberoglu MA, Gallagher TL, Morrow ZT, Talbot JC, Hromowyk KJ, Tenente IM, Langenau DM, Amacher SL (2017) Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish. Dev Biol 424(2):162–180. https://doi.org/10.1016/j.ydbio.2017.03.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Saera-Vila A, Kasprick DS, Junttila TL, Grzegorski SJ, Louie KW, Chiari EF, Kish PE, Kahana A (2015) Myocyte dedifferentiation drives extraocular muscle regeneration in adult zebrafish. Invest Ophthalmol Vis Sci 56(8):4977–4993. https://doi.org/10.1167/iovs.14-16103

    Article  PubMed  PubMed Central  Google Scholar 

  11. Louie KW, Saera-Vila A, Kish PE, Colacino JA, Kahana A (2017) Temporally distinct transcriptional regulation of myocyte dedifferentiation and Myofiber growth during muscle regeneration. BMC Genomics 18(1):854. https://doi.org/10.1186/s12864-017-4236-y

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saera-Vila A, Kish PE, Kahana A (2016) Fgf regulates dedifferentiation during skeletal muscle regeneration in adult zebrafish. Cell Signal 28(9):1196–1204. https://doi.org/10.1016/j.cellsig.2016.06.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15(7):713–720. https://doi.org/10.1038/ncb2788

    Article  PubMed  CAS  Google Scholar 

  14. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830. https://doi.org/10.1038/ncb0910-823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13(7):805–811. https://doi.org/10.1038/nn.2575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Eng CH, Abraham RT (2011) The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming. Oncogene 30(47):4687–4696. https://doi.org/10.1038/onc.2011.220

    Article  PubMed  CAS  Google Scholar 

  17. Pan H, Cai N, Li M, Liu GH, Izpisua Belmonte JC (2013) Autophagic control of cell ‘stemness’. EMBO Mol Med 5(3):327–331. https://doi.org/10.1002/emmm.201201999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang S, Xia P, Rehm M, Fan Z (2015) Autophagy and cell reprogramming. Cell Mol Life Sci 72(9):1699–1713. https://doi.org/10.1007/s00018-014-1829-3

    Article  PubMed  CAS  Google Scholar 

  19. Saera-Vila A, Kish PE, Louie KW, Grzegorski SJ, Klionsky DJ, Kahana A (2016) Autophagy regulates cytoplasmic remodeling during cell reprogramming in a zebrafish model of muscle regeneration. Autophagy 12(10):1864–1875. https://doi.org/10.1080/15548627.2016.1207015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Saera-Vila A, Louie KW, Sha C, Kelly RM, Kish PE, Kahana A (2018) Extraocular muscle regeneration in zebrafish requires late signals from insulin-like growth factors. PLoS One 13(2):e0192214. https://doi.org/10.1371/journal.pone.0192214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (2002) Short protocols in molecular biology, 5th edn. Wiley, New York

    Google Scholar 

  22. Hu Z, Zhang J, Zhang Q (2011) Expression pattern and functions of autophagy-related gene atg5 in zebrafish organogenesis. Autophagy 7(12):1514–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Higashijima S, Okamoto H, Ueno N, Hotta Y, Eguchi G (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol 192(2):289–299

    Article  CAS  PubMed  Google Scholar 

  24. He C, Bartholomew CR, Zhou W, Klionsky DJ (2009) Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. Autophagy 5(4):520–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nüsslein-Volhard C, Dahm R (2002) Zebrafish: a practical approach, vol 975. Oxford University Press, Oxford

    Google Scholar 

  26. Westerfield M (2007) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 5th edn. University of Oregon Press, Eugene

    Google Scholar 

  27. Fodor E, Sigmond T, Ari E, Lengyel K, Takacs-Vellai K, Varga M, Vellai T (2017) Methods to study autophagy in zebrafish. Methods Enzymol 588:467–496. https://doi.org/10.1016/bs.mie.2016.10.028

    Article  PubMed  CAS  Google Scholar 

  28. Mathai BJ, Meijer AH, Simonsen A (2017) Studying autophagy in zebrafish. Cell 6(3). https://doi.org/10.3390/cells6030021

Download references

Acknowledgments

This work was funded by R01 EY022633 from the National Eye Institute (A.K.), the Alfred Taubman Medical Research Institute (A.K.), the Alliance for Vision Research (A.K.), and an unrestricted departmental grant from Research to Prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alfonso Saera-Vila or Alon Kahana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saera-Vila, A., Kish, P.E., Kahana, A. (2018). Autophagy in Zebrafish Extraocular Muscle Regeneration. In: Turksen, K. (eds) Autophagy in Differentiation and Tissue Maintenance. Methods in Molecular Biology, vol 1854. Humana Press, New York, NY. https://doi.org/10.1007/7651_2018_160

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_160

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8747-4

  • Online ISBN: 978-1-4939-8748-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics