Skip to main content

Assessing Autophagy in the Leydig Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1854))

Abstract

Autophagy is an important intracellular degradation system which is implicated in many physiological and pathological processes. During autophagy, cytosolic constituents such as organelles and macromolecules are engulfed by autophagosome, and then they fuse with lysosomes for degradation and recycle of the engulfed components within the autolysosome to maintain cellular homeostasis. In male testis, the Leydig cells provide the major source of testosterone production. Autophagy is extremely active in Leydig cells and is involved in the steroid production. However, the precise role of autophagy in Leydig cells is still largely unknown. Thus, a comprehensive measurement of autophagic activity with different methods would shed light on our knowledge about the functional role of autophagy in regulating male reproductive physiology. In this chapter, we describe the morphological, cellular, and biochemical methods to monitor autophagy in Leydig cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12(9):814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492

    Article  PubMed  Google Scholar 

  3. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462(2):245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh R et al (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ravikumar B et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435

    Article  CAS  Google Scholar 

  6. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  7. Jiang P, Mizushima N (2015) LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods 75:13–18

    Article  CAS  PubMed  Google Scholar 

  8. Skinner MK (1991) Cell-cell interactions in the testis. Endocr Rev 12(1):45–77

    Article  CAS  PubMed  Google Scholar 

  9. Sharpe RM (1987) Testosterone and spermatogenesis. J Endocrinol 113(1):1–2

    Article  CAS  PubMed  Google Scholar 

  10. Haider SG (2004) Cell biology of Leydig cells in the testis. Int Rev Cytol 233:181–241

    Article  CAS  PubMed  Google Scholar 

  11. Habert R, Lejeune H, Saez JM (2001) Origin, differentiation and regulation of fetal and adult Leydig cells. Mol Cell Endocrinol 179(1–2):47–74

    Article  CAS  PubMed  Google Scholar 

  12. Kuopio T, Paranko J, Pelliniemi LJ (1989) Basement membrane and epithelial features of fetal-type Leydig cells in rat and human testis. Differentiation 40(3):198–206

    Article  CAS  PubMed  Google Scholar 

  13. Risbridger GP, de Kretser DM (1986) Percoll-gradient separation of Leydig cells from postnatal rat testes. J Reprod Fertil 76(1):331–338

    Article  CAS  PubMed  Google Scholar 

  14. Mendis-Handagama SM, Ariyaratne HB (2001) Differentiation of the adult Leydig cell population in the postnatal testis. Biol Reprod 65(3):660–671

    Article  CAS  PubMed  Google Scholar 

  15. Sharma RS, Pal PC, Rajalakshmi M (2006) Isolation and culture of Leydig cells from adult rats. Indian J Clin Biochem 21(1):27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang XM, Clermont Y, Hermo L (1988) Origin and fate of autophagosomes in Leydig cells of normal adult rats. J Androl 9(4):284–293

    Article  CAS  PubMed  Google Scholar 

  17. Yi J, Tang XM (1995) Functional implication of autophagy in steroid-secreting cells of the rat. Anat Rec 242(2):137–146

    Article  CAS  PubMed  Google Scholar 

  18. Kuma A, Matsui M, Mizushima N (2007) LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3(4):323–328

    Article  CAS  PubMed  Google Scholar 

  19. Kabeya Y et al (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117(Pt 13):2805–2812

    Article  CAS  PubMed  Google Scholar 

  20. Kabeya Y et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545

    Article  CAS  PubMed  Google Scholar 

  22. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36(12):2491–2502

    Article  CAS  PubMed  Google Scholar 

  24. Mizushima N (2009) Methods for monitoring autophagy using GFP-LC3 transgenic mice. Methods Enzymol 452:13–23

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L et al (2007) Method for real-time monitoring of protein degradation at the single cell level. BioTechniques 42(4):446, 448, 450

    Google Scholar 

  26. Yewdell JW, Lacsina JR, Rechsteiner MC, Nicchitta CV (2011) Out with the old, in with the new? Comparing methods for measuring protein degradation. Cell Biol Int 35(5):457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science of China (Grant No. 91649202 and 31471277) and National key R&D program of China (Grant No. 2016YFA0500901). Hui Gao and Chao Liu contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gao, H., Liu, C., Li, W. (2018). Assessing Autophagy in the Leydig Cells. In: Turksen, K. (eds) Autophagy in Differentiation and Tissue Maintenance. Methods in Molecular Biology, vol 1854. Humana Press, New York, NY. https://doi.org/10.1007/7651_2018_123

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_123

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8747-4

  • Online ISBN: 978-1-4939-8748-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics