Advertisement

pp 1-16 | Cite as

Methods for Monitoring Autophagy in Silkworm Organs

  • Aurora Montali
  • Morena Casartelli
  • Daniele Bruno
  • Annalisa Grimaldi
  • Gianluca Tettamanti
Protocol
Part of the Methods in Molecular Biology book series

Abstract

In holometabolous insects, various larval organs are remodeled by autophagy during metamorphosis. Although moths and butterflies are among the first animal models in which this self-eating process was described, only in recent years autophagy has been analyzed in detail in these insects. In particular, the silkworm Bombyx mori, which represents a well-studied model among Lepidoptera, provides a wide repertoire of cellular and molecular tools useful for studying the occurrence of autophagy and for evaluating its role in postembryonic development. Here, we describe some morphological, biochemical, and molecular methods to monitor autophagy in silkworm organs.

Keywords

Acid phosphatase Atg8 Autophagy Bombyx mori Gene expression Metamorphosis Midgut Silk gland Transmission electron microscopy 

Notes

Acknowledgements

This work was partially supported by FAR 2017 (University of Insubria) to GT. Aurora Montali is a Ph.D. student of the “Life Sciences and Biotechnology” course at Università degli Studi dell’Insubria. Daniele Bruno is a Ph.D. student of the “Biotechnologies, Biosciences and Surgical Technologies” course at Università degli Studi dell’Insubria.

References

  1. 1.
    Locke M, Collins JV (1965) The structure and formation of protein granules in the fat body of an insect. J Cell Biol 26:857–884CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Locke M, Collins JV (1968) Protein uptake into multivesicular bodies and storage granules in the fat body of an insect. J Cell Biol 36:453–483CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tian L, Ma L, Guo E, Deng X et al (2013) 20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body. Autophagy 9:1172–1187CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Franzetti E, Romanelli D, Caccia S, Cappellozza S, Congiu T et al (2015) The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium. Cell Tissue Res 361:509–528CrossRefPubMedGoogle Scholar
  5. 5.
    Romanelli D, Casartelli M, Cappellozza S, de Eguileor M, Tettamanti G (2016) Roles and regulation of autophagy and apoptosis in the remodelling of the lepidopteran midgut epithelium during metamorphosis. Sci Rep 6:32939ADSCrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175CrossRefPubMedGoogle Scholar
  7. 7.
    Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Romanelli D, Casati B, Franzetti E, Tettamanti G (2014) A molecular view of autophagy in lepidoptera. Biomed Res Int 2014:902315CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35CrossRefPubMedGoogle Scholar
  11. 11.
    Liu X, Dai F, Guo E, Li K, Ma L et al (2015) 20-Hydroxyecdysone (20E) primary response gene E93 modulates 20E signaling to promote Bombyx larval-pupal metamorphosis. J Biol Chem 290:27370–27383CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hu W, Liu C, Cheng T, Li W, Wang N, Xia Q (2016) Histomorphometric and transcriptomic features characterize silk glands’ development during the molt to intermolt transition process in silkworm. Insect Biochem Mol Biol 76:95–108CrossRefPubMedGoogle Scholar
  13. 13.
    Ji MM, Lee JM, Mon H, Xu J, Tatsuke T, Kusakabe T (2016) Proteasome inhibitor MG132 impairs autophagic flux through compromising formation of autophagosomes in Bombyx cells. Biochem Biophys Res Commun 479:690–696CrossRefPubMedGoogle Scholar
  14. 14.
    Ji MM, Lee JM, Mon H, Iiyama K, Tatsuke T et al (2017) Lipidation of BmAtg8 is required for autophagic degradation of p62 bodies containing ubiquitinated proteins in the silkworm, Bombyx mori. Insect Biochem Mol Biol 89:86–96CrossRefPubMedGoogle Scholar
  15. 15.
    Xie K, Tian L, Guo X, Li K, Li J et al (2016) BmATG5 and BmATG6 mediate apoptosis following autophagy induced by 20-hydroxyecdysone or starvation. Autophagy 12:381–396CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xia Q, Li S, Feng Q (2014) Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori. Annu Rev Entomol 59:513–536CrossRefPubMedGoogle Scholar
  17. 17.
    Franzetti E, Huang ZJ, Shi YX, Xie K, Deng XJ et al (2012) Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 17:305–324CrossRefPubMedGoogle Scholar
  18. 18.
    Montali A, Romanelli D, Cappellozza S, Grimaldi A, de Eguileor M, Tettamanti G (2017) Timing of autophagy and apoptosis during posterior silk gland degeneration in Bombyx mori. Arthropod Struct Dev 46:518–528CrossRefPubMedGoogle Scholar
  19. 19.
    Khoa DB, Takeda M (2012) Expression of autophagy 8 (Atg8) and its role in the midgut and other organs of the greater wax moth, Galleria mellonella, during metamorphic remodelling and under starvation. Insect Mol Biol 21:473–487CrossRefPubMedGoogle Scholar
  20. 20.
    Gai Z, Zhang X, Islam M, Wang X, Li A et al (2013) Characterization of Atg8 in lepidopteran insect cells. Arch Insect Biochem Physiol 84:57–77PubMedGoogle Scholar
  21. 21.
    Li YB, Li XR, Yang T, Wang JX, Zhao XF (2016) The steroid hormone 20-hydroxyecdysone promotes switching from autophagy to apoptosis by increasing intracellular calcium levels. Insect Biochem Mol Biol 79:73–86CrossRefPubMedGoogle Scholar
  22. 22.
    Shiba H, Yabu T, Sudayama M, Mano N, Arai N et al (2016) Sequential steps of macroautophagy and chaperone-mediated autophagy are involved in the irreversible process of posterior silk gland histolysis during metamorphosis of Bombyx mori. J Exp Biol 219:1146–1153CrossRefPubMedGoogle Scholar
  23. 23.
    Hu C, Zhang X, Teng YB, Hu HX, Li WF (2010) Structure of autophagy-related protein Atg8 from the silkworm Bombyx mori. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:787–790CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li Q, Deng X, Yang W, Huang Z, Tettamanti G et al (2010) Autophagy, apoptosis, and ecdysis-related gene expression in the silk gland of the silkworm (Bombyx mori) during metamorphosis. Can J Zool 88:1169–1178CrossRefGoogle Scholar
  25. 25.
    Denton D, Shravage B, Simin R, Mills K, Berry DL et al (2009) Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol 19:1741–1746CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Santos DE, Azevedo DO, Campos LA, Zanuncio JC, Serrão JE (2015) Melipona quadrifasciata (Hymenoptera: Apidae) fat body persists through metamorphosis with a few apoptotic cells and an increased autophagy. Protoplasma 252:619–627CrossRefPubMedGoogle Scholar
  27. 27.
    Tindwa H, Jo YH, Patnaik BB, Lee YS, Kang SS, Han YS (2015) Molecular cloning and characterization of autophagy-related gene TmATG8 in Listeria-invaded hemocytes of Tenebrio molitor. Dev Comp Immunol 51:88–98CrossRefPubMedGoogle Scholar
  28. 28.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  29. 29.
    Moss WD (1983) Methods of enzymatic analysis. In: Bergmeyer J, Grassi M (eds) Esterases, glycosidases, lyases, ligases, vol 4. Verlag-Chemie, Weinheim, pp 92–106Google Scholar
  30. 30.
    Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354ADSCrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2018

Authors and Affiliations

  • Aurora Montali
    • 1
  • Morena Casartelli
    • 2
  • Daniele Bruno
    • 1
  • Annalisa Grimaldi
    • 1
  • Gianluca Tettamanti
    • 1
  1. 1.Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
  2. 2.Department of BiosciencesUniversity of MilanoMilanoItaly

Personalised recommendations