Advertisement

pp 1-12 | Cite as

Histopathological and Behavioral Assessments of Aging Effects on Stem Cell Transplants in an Experimental Traumatic Brain Injury

  • Jea-Young Lee
  • Roger Lin
  • Hung Nguyen
  • M. Grant Liska
  • Trenton Lippert
  • Yuji Kaneko
  • Cesar V. Borlongan
Protocol
Part of the Methods in Molecular Biology book series

Abstract

Traumatic brain injury (TBI) displays cognitive and motor symptoms following the initial injury which can be exacerbated by secondary cell death. Aging contributes significantly to the morbidity of TBI, with higher rates of negative neurological and behaviors outcomes. In the recent study, young and aged animals were injected intravenously with human adipose-derived mesenchymal stem cells (hADSCs) (Tx), conditioned media (CM), or vehicle (unconditioned media) following TBI. The beneficial effects of hADSCs were analyzed using various molecular and behavioral techniques. More specially, DiR-labeled hADSCs were used to observe the biodistribution of the transplanted cells. In addition, a battery of behavior tests was conducted to evaluate the neuromotor function for each treatment group and various regions of the brain were analyzed utilizing Nissl, hematoxylin and eosin (H&E), and human nuclei (HuNu) staining. Finally, flow cytometry was also performed to determine the levels of various proteins in the spleen. Here, we discuss the protocols for characterizing the histopathological and behavioral effects of transplanted stem cells in an animal model of TBI, with an emphasis on the role of aging in the therapeutic outcomes.

Keywords

Aged Animal model Neurodegeneration Neurogenesis Regenerative medicine 

References

  1. 1.
    Taylor CA, Bell JM, Breiding MJ, Xu L (2017) Traumatic brain injury-related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill Summ 66(9):1–16.  https://doi.org/10.15585/mmwr.ss6609a1. PubMed: 28301451CrossRefPubMedGoogle Scholar
  2. 2.
    Hawkins BE, Cowart JC, Parsley MA, Capra BA, Eidson KA, Hellmich HL, Dewitt DS, Prough DS (2013) Effects of trauma, hemorrhage and resuscitation in aged rats. Brain Res 1496:28–35.  https://doi.org/10.1016/j.brainres.2012.12.027. PubMed: 23274538CrossRefPubMedGoogle Scholar
  3. 3.
    Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99(4):2344–2349.  https://doi.org/10.1073/pnas.022438099. PubMed: 11782534ADSCrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bjugstad KB, Teng YD, Redmond DE Jr, Elsworth JD, Roth RH, Cornelius SK, Snyder EY, Sladek JR Jr (2008) Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson’s disease. Exp Neurol 211(2):362–369.  https://doi.org/10.1016/j.expneurol.2008.01.025. PubMed: 18394605CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Clarkson ED (2001) Fetal tissue transplantation for patients with Parkinson’s disease: a database of published clinical results. Drugs Aging 18(10):773–785. PubMed: 11735624CrossRefPubMedGoogle Scholar
  6. 6.
    Fraser JK, Wulur I, Alfonso Z, Hedrick MH (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24(4):150–154.  https://doi.org/10.1016/j.tibtech.2006.01.010. PubMed: 16488036CrossRefPubMedGoogle Scholar
  7. 7.
    Harting MT, Sloan LE, Jimenez F, Baumgartner J, Cox CS Jr (2009) Subacute neural stem cell therapy for traumatic brain injury. J Surg Res 153(2):188–194.  https://doi.org/10.1016/j.jss.2008.03.037. PubMed: 18694578CrossRefPubMedGoogle Scholar
  8. 8.
    Isacson O, Costantini L, Schumacher JM, Cicchetti F, Chung S, Kim K (2001) Cell implantation therapies for Parkinson’s disease using neural stem, transgenic or xenogeneic donor cells. Parkinsonism Relat Disord 7(3):205–212. PubMed: 11331188CrossRefPubMedGoogle Scholar
  9. 9.
    Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD et al (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 247(4942):574–577. PubMed: 2105529ADSCrossRefPubMedGoogle Scholar
  10. 10.
    Liu YP, Lang BT, Baskaya MK, Dempsey RJ, Vemuganti R (2009) The potential of neural stem cells to repair stroke-induced brain damage. Acta Neuropathol 117(5):469–480.  https://doi.org/10.1007/s00401-009-0516-1. PubMed: 19283395CrossRefPubMedGoogle Scholar
  11. 11.
    Mahmood A, Lu D, Lu M, Chopp M (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53(3):697–702. discussion 702–693 [PubMed: 12943585]CrossRefPubMedGoogle Scholar
  12. 12.
    Muraoka K, Shingo T, Yasuhara T, Kameda M, Yuen WJ, Uozumi T, Matsui T, Miyoshi Y, Date I (2008) Comparison of the therapeutic potential of adult and embryonic neural precursor cells in a rat model of Parkinson disease. J Neurosurg 108(1):149–159.  https://doi.org/10.3171/JNS/2008/108/01/0149. PubMed: 18173325CrossRefPubMedGoogle Scholar
  13. 13.
    Yang M, Donaldson AE, Jiang Y, Iacovitti L (2003) Factors influencing the differentiation of dopaminergic traits in transplanted neural stem cells. Cell Mol Neurobiol 23(4–5):851–864. PubMed: 14514036CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt HP (2004) Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 32(6):370–373.  https://doi.org/10.1016/j.jcms.2004.06.002. PubMed: 15555520CrossRefPubMedGoogle Scholar
  15. 15.
    Xue S, Zhang HT, Zhang P, Luo J, Chen ZZ, Jang XD, Xu RX (2010) Functional endothelial progenitor cells derived from adipose tissue show beneficial effect on cell therapy of traumatic brain injury. Neurosci Lett 473(3):186–191.  https://doi.org/10.1016/j.neulet.2010.02.035. PubMed: 20178832CrossRefPubMedGoogle Scholar
  16. 16.
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789.  https://doi.org/10.1101/gr.132159.111. PubMed: 22955988CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361.  https://doi.org/10.1016/j.tcb.2011.04.001. PubMed: 21550244CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao X, Booth CJ, Wu J, Zhang C, Spector DL (2012) The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2(1):111–123.  https://doi.org/10.1016/j.celrep.2012.06.003. PubMed: 22840402CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ikegame Y, Yamashita K, Hayashi S, Mizuno H, Tawada M, You F, Yamada K, Tanaka Y, Egashira Y, Nakashima S, Yoshimura S, Iwama T (2011) Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13(6):675–685.  https://doi.org/10.3109/14653249.2010.549122. PubMed: 21231804CrossRefPubMedGoogle Scholar
  20. 20.
    Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, Park JS (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48(1):15–24.  https://doi.org/10.1016/j.jdermsci.2007.05.018. PubMed: 17643966CrossRefPubMedGoogle Scholar
  21. 21.
    Sun J, Zhou H, Deng Y, Zhang Y, Gu P, Ge S, Fan X (2012) Conditioned medium from bone marrow mesenchymal stem cells transiently retards osteoblast differentiation by downregulating runx2. Cells Tissues Organs 196(6):510–522.  https://doi.org/10.1159/000339245. PubMed: 22906827CrossRefPubMedGoogle Scholar
  22. 22.
    Carlson ME, Conboy IM (2007) Loss of stem cell regenerative capacity within aged niches. Aging Cell 6(3):371–382.  https://doi.org/10.1111/j.1474-9726.2007.00286.x. PubMed: 17381551CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027):760–764.  https://doi.org/10.1038/nature03260. PubMed: 15716955ADSCrossRefPubMedGoogle Scholar
  24. 24.
    Borlongan CV, Hadman M, Sanberg CD, Sanberg PR (2004) Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35(10):2385–2389.  https://doi.org/10.1161/01.STR.0000141680.49960.d7. PubMed: 15345799CrossRefPubMedGoogle Scholar
  25. 25.
    Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Sanberg PR, Sanchez-Ramos J, Song S, Kaneko Y, Borlongan CV (2014) Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One 9(3):e90953.  https://doi.org/10.1371/journal.pone.0090953. PubMed: 24621603ADSCrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tajiri N, Acosta S, Portillo-Gonzales GS, Aguirre D, Reyes S, Lozano D, Pabon M, Dela Pena I, Ji X, Yasuhara T, Date I, Solomita MA, Antonucci I, Stuppia L, Kaneko Y, Borlongan CV (2014) Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke. Front Cell Neurosci 8:227.  https://doi.org/10.3389/fncel.2014.00227. PubMed: 25165432CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tajiri N, Kaneko Y, Shinozuka K, Ishikawa H, Yankee E, McGrogan M, Case C, Borlongan CV (2013) Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One 8(9):e74857.  https://doi.org/10.1371/journal.pone.0074857. PubMed: 24023965ADSCrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tajiri N, Acosta SA, Shahaduzzaman M, Ishikawa H, Shinozuka K, Pabon M, Hernandez-Ontiveros D, Kim DW, Metcalf C, Staples M, Dailey T, Vasconcellos J, Franyuti G, Gould L, Patel N, Cooper D, Kaneko Y, Borlongan CV, Bickford PC (2014) Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci 34(1):313–326.  https://doi.org/10.1523/JNEUROSCI.2425-13.2014. PubMed: 24381292CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2018

Authors and Affiliations

  • Jea-Young Lee
    • 1
  • Roger Lin
    • 1
  • Hung Nguyen
    • 1
  • M. Grant Liska
    • 1
  • Trenton Lippert
    • 1
  • Yuji Kaneko
    • 1
  • Cesar V. Borlongan
    • 2
    • 3
  1. 1.Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida Morsani College of MedicineTampaUSA
  2. 2.Center of Excellence for Aging & Brain Repair, Morsani College of MedicineUniversity of South FloridaTampaUSA
  3. 3.Department of Neurosurgery and Brain Repair, Morsani College of MedicineUniversity of South FloridaTampaUSA

Personalised recommendations