Skip to main content

Ribonucleoproteins Mediated Efficient In Vivo Gene Editing in Skin Stem Cells

  • Protocol
  • First Online:
Skin Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1879))

Abstract

The clustered regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system functions like an adaptive immune system in a variety of microbes and has recently been engineered as a powerful tool for manipulating genomic sequences in a huge variety of cell types. In mammals, CRISPR/Cas9 has the potential to bring curative therapies to patients with genetic diseases, although it remained unknown whether suitable in vivo methods for its use are feasible. It is now appreciated that the efficient delivery of these genome-editing tools into most tissue types, including skin, remains a major challenge. Here, we describe a detailed protocol for performing in vivo gene editing of genomic sequences in mouse skin stem cells using Cas9/sgRNAs ribonucleoproteins in combination with electrotransfer technology. We here present all of the required methods needed for the protocol, including molecular cloning, in vitro sgRNA expression and sgRNA purification, Cas9 protein purification, and in vivo delivery of cas9 ribonucleoproteins. This protocol provides a novel in vivo gene editing strategy using ribonucleoproteins for skin stem cells and can potentially be used as curative treatment for genetic diseases in skin and other somatic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167

    Article  CAS  Google Scholar 

  2. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    Article  CAS  Google Scholar 

  3. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819

    Article  CAS  Google Scholar 

  4. Jinek M et al (2013) RNA-programmed genome editing in human cells. Elife 2:e00471

    Article  Google Scholar 

  5. Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823

    Article  CAS  Google Scholar 

  6. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  Google Scholar 

  7. Maddalo D et al (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516(7531):423–427

    Article  CAS  Google Scholar 

  8. Yin H et al (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32(6):551–553

    Article  CAS  Google Scholar 

  9. Swiech L et al (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33(1):102–106

    Article  CAS  Google Scholar 

  10. Chiou SH et al (2015) Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev 29(14):1576–1585

    Article  CAS  Google Scholar 

  11. Bakondi B et al (2016) In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24(3):556–563

    Article  CAS  Google Scholar 

  12. Long C et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400

    Article  CAS  Google Scholar 

  13. Nelson CE et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403

    Article  CAS  Google Scholar 

  14. Maresch R et al (2016) Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun 7:10770

    Article  CAS  Google Scholar 

  15. Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavcic D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320

    Article  CAS  Google Scholar 

  16. Titomirov AV, Sukharev S, Kistanova E (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1088(1):131–134

    Article  CAS  Google Scholar 

  17. Heller R et al (1996) In vivo gene electroinjection and expression in rat liver. FEBS Lett 389(3):225–228

    Article  CAS  Google Scholar 

  18. Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16(9):867–870. 1087-0156 (Print)

    Article  CAS  Google Scholar 

  19. Heller LC, Heller R (2006) In vivo electroporation for gene therapy. Hum Gene Ther 17(9):890–897

    Article  CAS  Google Scholar 

  20. Favard C, Dean D, Rols M-P (2007) Electrotransfer as a non viral method of gene delivery. Curr Gene Ther 7(1):67–77

    Article  CAS  Google Scholar 

  21. Cemazar M, Sersa G (2007) Electrotransfer of therapeutic molecules into tissues. Curr Opin Mol Ther 9(6):554–562

    CAS  PubMed  Google Scholar 

  22. Suzuki K et al (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149

    Article  CAS  Google Scholar 

  23. Wu W (2016) Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proc Natl Acad Sci U S A 114(7):1660–1665

    Article  Google Scholar 

  24. Ran FA et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

    Article  CAS  Google Scholar 

  25. Cong L, Zhang F (2015) Genome engineering using CRISPR-Cas9 system. Methods Mol Biol 1239:197–217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, W., Chen, T. (2018). Ribonucleoproteins Mediated Efficient In Vivo Gene Editing in Skin Stem Cells. In: Turksen, K. (eds) Skin Stem Cells. Methods in Molecular Biology, vol 1879. Humana Press, New York, NY. https://doi.org/10.1007/7651_2018_115

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_115

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8869-3

  • Online ISBN: 978-1-4939-8870-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics