pp 1-11 | Cite as

Monitoring Mitochondrial Changes by Alteration of the PINK1-Parkin Signaling in Drosophila

  • Tsuyoshi Inoshita
  • Kahori Shiba-Fukushima
  • Hongrui Meng
  • Nobutaka Hattori
  • Yuzuru Imai
Protocol
Part of the Methods in Molecular Biology book series

Abstract

Mitochondrial quality control is a key process in tissues with high energy demands, such as the brain and muscles. Recent studies using Drosophila have revealed that the genes responsible for familial forms of juvenile Parkinson’s disease (PD), PINK1 and Parkin regulate mitochondrial function and motility. Cell biological analysis using mammalian cultured cells suggests that the dysregulation of mitophagy by PINK1 and Parkin leads to neurodegeneration in PD. In this chapter, we describe the methods to monitor mitochondrial morphology in the indirect flight muscles of adult Drosophila and Drosophila primary cultured neurons and the methods to analyze the motility of mitochondria in the axonal transport of living larval motor neurons.

Keywords:

Axonal transport Fluorescence imaging Mitochondrial fusion and fission Muscle mitochondria Primary neuron culture 

References

  1. 1.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608. doi:10.1038/33416 ADSCrossRefPubMedGoogle Scholar
  2. 2.
    Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160. doi:10.1126/science.1096284. [pii]ADSCrossRefPubMedGoogle Scholar
  3. 3.
    Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803. doi:10.1083/jcb.200809125 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189(2):211–221. doi:10.1083/jcb.200910140 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131. doi:10.1038/ncb2012 CrossRefPubMedGoogle Scholar
  6. 6.
    Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N (2012) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2:1002. doi:10.1038/srep01002 ADSCrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205(2):143–153. doi:10.1083/jcb.201402104 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Koyano K, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon E, Trempe J-F, Saeki Y, Tanaka K, Matsuda N (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510(7503):162–166ADSPubMedGoogle Scholar
  9. 9.
    Shiba-Fukushima K, Arano T, Matsumoto G, Inoshita T, Yoshida S, Ishihama Y, Ryu KY, Nukina N, Hattori N, Imai Y (2014) Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes parkin mitochondrial tethering. PLoS Genet 10(12):e1004861. doi:10.1371/journal.pgen.1004861 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP, Sviderskiy VO, Olszewski JL, Koerber JT, Xie T, Beausoleil SA, Wells JA, Gygi SP, Schulman BA, Harper JW (2014) Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell. doi:10.1016/j.molcel.2014.09.007 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, Matsuda N (2015) Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol 209(1):111–128. doi:10.1083/jcb.201410050 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A 100(7):4078–4083. doi:10.1073/pnas.0737556100 ADSCrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441(7097):1162–1166. doi:10.1038/nature04779 ADSCrossRefPubMedGoogle Scholar
  14. 14.
    Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441(7097):1157–1161. doi:10.1038/nature04788 ADSCrossRefPubMedGoogle Scholar
  15. 15.
    Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H, Lu B (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103(28):10793–10798. doi:10.1073/pnas.0602493103 ADSCrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Imai Y, Kanao T, Sawada T, Kobayashi Y, Moriwaki Y, Ishida Y, Takeda K, Ichijo H, Lu B, Takahashi R (2010) The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila. PLoS Genet 6(12):e1001229. doi:10.1371/journal.pgen.1001229 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shiba-Fukushima K, Inoshita T, Hattori N, Imai Y (2014) PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. PLoS Genet 10(6):e1004391. doi:10.1371/journal.pgen.1004391 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191(7):1367–1380. doi:10.1083/jcb.201007013 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A 107(11):5018–5023. doi:10.1073/pnas.0913485107 ADSCrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P, Millan I, Shen A, Saxton W, Kanao T, Takahashi R, Hattori N, Imai Y, Lu B (2012) Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet 8(3):e1002537. doi:10.1371/journal.pgen.1002537. PGENETICS-D-11-02331 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, Lavoie MJ, Schwarz TL (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147(4):893–906 . doi:10.1016/j.cell.2011.10.018S0092-8674(11)01224-4 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, Lu B (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A 105(19):7070–7075. doi:10.1073/pnas.0711845105 ADSCrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yang YF, Nishimura I, Imai Y, Takahashi R, Lu BW (2003) Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 37(6):911–924. doi:10.1016/S0896-6273(03)00143-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Tsuyoshi Inoshita
    • 1
  • Kahori Shiba-Fukushima
    • 1
  • Hongrui Meng
    • 2
  • Nobutaka Hattori
    • 1
    • 3
    • 4
  • Yuzuru Imai
    • 3
    • 4
  1. 1.Department of Treatment and Research in Multiple Sclerosis and Neuro-Intractable DiseaseJuntendo University Graduate School of MedicineTokyoJapan
  2. 2.Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
  3. 3.Department of Research for Parkinson’s DiseaseJuntendo University Graduate School of MedicineTokyoJapan
  4. 4.Department of NeurologyJuntendo University Graduate School of MedicineTokyoJapan

Personalised recommendations