Skip to main content

Simultaneous Detection of Autophagy and Epithelial to Mesenchymal Transition in the Non-small Cell Lung Cancer Cells

  • Protocol
  • First Online:
Autophagy in Differentiation and Tissue Maintenance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1854))

Abstract

Autophagy is increasingly identified as a central player in many cellular activities from cell proliferation to cell division, migration, and differentiation. However, it is also considered as a double-edged sword in cancer biology which either promotes oncogenesis/invasion or sensitizes the tumor cells to chemotherapy induced apoptosis. Recent investigations have provided direct evidence for regulation of cellular phenotype via autophagy pathway. One of the most important types of phenotype conversion is Epithelial-Mesenchymal-Transition (EMT), resulting in alteration of epithelial cell properties to a more mesenchymal form. In the current chapter, we provide a method which is established and being used in our laboratory for detection of autophagy and EMT in lung epithelial cells and show the involvement of autophagy in modulation of cellular phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Novikoff AB, Beaufay H, De Duve C (1956) Electron microscopy of lysosomerich fractions from rat liver. J Biophys Biochem Cytol 2(4 Suppl):179–184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Madeo F, Zimmermann A, Maiuri MC, Kroemer G (2015) Essential role for autophagy in life span extension. J Clin Invest 125(1):85–93. https://doi.org/10.1172/JCI73946

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830. https://doi.org/10.1038/ncb0910-823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Deretic V, Kimura T, Timmins G, Moseley P, Chauhan S, Mandell M (2015) Immunologic manifestations of autophagy. J Clin Invest 125(1):75–84. https://doi.org/10.1172/JCI73945

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jiang P, Mizushima N (2014) Autophagy and human diseases. Cell Res 24(1):69–79. https://doi.org/10.1038/cr.2013.161

    Article  PubMed  CAS  Google Scholar 

  6. Jiang X, Overholtzer M, Thompson CB (2015) Autophagy in cellular metabolism and cancer. J Clin Invest 125(1):47–54. https://doi.org/10.1172/jci73942

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kuballa P, Nolte WM, Castoreno AB, Xavier RJ (2012) Autophagy and the immune system. Annu Rev Immunol 30:611–646. https://doi.org/10.1146/annurev-immunol-020711-074948

    Article  PubMed  CAS  Google Scholar 

  8. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19(8):983–997. https://doi.org/10.1038/nm.3232

    Article  PubMed  CAS  Google Scholar 

  9. Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16(8):461–472. https://doi.org/10.1038/nrm4024

    Article  PubMed  CAS  Google Scholar 

  10. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  11. Li WW, Li J, Bao JK (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69(7):1125–1136. https://doi.org/10.1007/s00018-011-0865-5

    Article  PubMed  CAS  Google Scholar 

  12. Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24(1):92–104. https://doi.org/10.1038/cr.2013.153

    Article  PubMed  CAS  Google Scholar 

  13. Zsiros V, Katz S, Doczi N, Kiss AL (2017) Autophagy is the key process in the re-establishment of the epitheloid phenotype during mesenchymal-epithelial transition (MET). Exp Cell Res 352(2):382–392. https://doi.org/10.1016/j.yexcr.2017.02.031

    Article  PubMed  CAS  Google Scholar 

  14. Doberstein K, Harter PN, Haberkorn U, Bretz NP, Arnold B, Carretero R, Moldenhauer G, Mittelbronn M, Altevogt P (2015) Antibody therapy to human L1CAM in a transgenic mouse model blocks local tumor growth but induces EMT. Int J Cancer 136(5):E326–E339. https://doi.org/10.1002/ijc.29222

    Article  PubMed  CAS  Google Scholar 

  15. Harner-Foreman N, Vadakekolathu J, Laversin SA, Mathieu MG, Reeder S, Pockley AG, Rees RC, Boocock DJ (2017) A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics. Sci Rep 7:40633. https://doi.org/10.1038/srep40633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Heldin CH, Vanlandewijck M, Moustakas A (2012) Regulation of EMT by TGFbeta in cancer. FEBS Lett 586(14):1959–1970. https://doi.org/10.1016/j.febslet.2012.02.037

    Article  PubMed  CAS  Google Scholar 

  17. Massague J (2012) TGF[beta] signalling in context. Nat Rev Mol Cell Biol 13(10):616–630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. https://doi.org/10.1016/j.cell.2009.11.007

    Article  PubMed  CAS  Google Scholar 

  19. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300. https://doi.org/10.3322/caac.20073

    Article  PubMed  Google Scholar 

  20. Du B, Shim JS (2016) Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 21(7). https://doi.org/10.3390/molecules21070965

  21. Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431(7009):707–712. https://doi.org/10.1038/nature02962

    Article  PubMed  CAS  Google Scholar 

  22. Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL (2004) Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia 6(5):603–610. https://doi.org/10.1593/neo.04241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18(1):99–115. https://doi.org/10.1101/gad.276304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shin SY, Rath O, Zebisch A, Choo SM, Kolch W, Cho KH (2010) Functional roles of multiple feedback loops in extracellular signal-regulated kinase and Wnt signaling pathways that regulate epithelial-mesenchymal transition. Cancer Res 70(17):6715–6724. https://doi.org/10.1158/0008-5472.can-10-1377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Xiao D, He J (2010) Epithelial mesenchymal transition and lung cancer. J Thorac Dis 2(3):154–159. https://doi.org/10.3978/j.issn.2072-1439.2010.02.03.7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bae GY, Hong SK, Park JR, Kwon OS, Kim KT, Koo J, Oh E, Cha HJ (2016) Chronic TGFbeta stimulation promotes the metastatic potential of lung cancer cells by Snail protein stabilization through integrin beta3-Akt-GSK3beta signaling. Oncotarget 7(18):25366–25376. 10.18632/oncotarget.8295

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eberlein C, Rooney C, Ross SJ, Farren M, Weir HM, Barry ST (2015) E-Cadherin and EpCAM expression by NSCLC tumour cells associate with normal fibroblast activation through a pathway initiated by integrin [alpha]v[beta]6 and maintained through TGF[beta] signalling. Oncogene 34(6):704–716. https://doi.org/10.1038/onc.2013.600

    Article  PubMed  CAS  Google Scholar 

  28. Izumchenko E, Chang X, Michailidi C, Kagohara L, Ravi R, Paz K, Brait M, Hoque MO, Ling S, Bedi A, Sidransky D (2014) The TGFβ-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors. Cancer Res 74(14):3995–4005. https://doi.org/10.1158/0008-5472.can-14-0110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Koeck S, Amann A, Huber JM, Gamerith G, Hilbe W, Zwierzina H (2016) The impact of metformin and salinomycin on transforming growth factor beta-induced epithelial-to-mesenchymal transition in non-small cell lung cancer cell lines. Oncol Lett 11(4):2946–2952. https://doi.org/10.3892/ol.2016.4323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yang H, Wang L, Zhao J, Chen Y, Lei Z, Liu X, Xia W, Guo L, Zhang HT (2015) TGF-beta-activated SMAD3/4 complex transcriptionally upregulates N-cadherin expression in non-small cell lung cancer. Lung Cancer 87(3):249–257. https://doi.org/10.1016/j.lungcan.2014.12.015

    Article  PubMed  Google Scholar 

  31. Parvani JG, Gujrati MD, Mack MA, Schiemann WP, Z-R L (2015) Silencing β3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple-negative breast cancer. Cancer Res 75(11):2316–2325. https://doi.org/10.1158/0008-5472.can-14-3485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Salvo E, Garasa S, Dotor J, Morales X, Peláez R, Altevogt P, Rouzaut A (2014) Combined targeting of TGF-β1 and integrin β3 impairs lymph node metastasis in a mouse model of non-small-cell lung cancer. Mol Cancer 13(1):112. https://doi.org/10.1186/1476-4598-13-112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Rintoul RC, Sethi T (2002) Extracellular matrix regulation of drug resistance in small-cell lung cancer. Clin Sci 102(4):417

    Article  CAS  Google Scholar 

  34. Mokarram P, Albokashy M, Zarghooni M, Moosavi MA, Sepehri Z, Chen QM, Hudecki A, Sargazi A, Alizadeh J, Moghadam AR, Hashemi M, Movassagh H, Klonisch T, Owji AA, Los MJ, Ghavami S (2017) New frontiers in the treatment of colorectal cancer: autophagy and the unfolded protein response as promising targets. Autophagy 13(5):781–819. https://doi.org/10.1080/15548627.2017.1290751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Macintosh RL, Timpson P, Thorburn J, Anderson KI, Thorburn A, Ryan KM (2012) Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle 11(10):2022–2029. https://doi.org/10.4161/cc.20424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sandilands E, Serrels B, McEwan DG, Morton JP, Macagno JP, McLeod K, Stevens C, Brunton VG, Langdon WY, Vidal M, Sansom OJ, Dikic I, Wilkinson S, Frame MC (2011) Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat Cell Biol 14(1):51–60. https://doi.org/10.1038/ncb2386

    Article  PubMed  CAS  Google Scholar 

  37. Grassi G, Di Caprio G, Santangelo L, Fimia GM, Cozzolino AM, Komatsu M, Ippolito G, Tripodi M, Alonzi T (2015) Autophagy regulates hepatocyte identity and epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions promoting Snail degradation. Cell Death Dis 6:e1880. https://doi.org/10.1038/cddis.2015.249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kenific CM, Stehbens SJ, Goldsmith J, Leidal AM, Faure N, Ye J, Wittmann T, Debnath J (2016) NBR1 enables autophagy-dependent focal adhesion turnover. J Cell Biol 212(5):577–590. https://doi.org/10.1083/jcb.201503075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sharifi MN, Mowers EE, Drake LE, Collier C, Chen H, Zamora M, Mui S, Macleod KF (2016) Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3. Cell Rep 15(8):1660–1672. https://doi.org/10.1016/j.celrep.2016.04.065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Vellon L, Menendez JA (2011) Autophagy positively regulates the CD44(+) CD24(−/low) breast cancer stem-like phenotype. Cell Cycle 10(22):3871–3885. https://doi.org/10.4161/cc.10.22.17976

    Article  PubMed  CAS  Google Scholar 

  41. Espina V, Mariani BD, Gallagher RI, Tran K, Banks S, Wiedemann J, Huryk H, Mueller C, Adamo L, Deng J, Petricoin EF, Pastore L, Zaman S, Menezes G, Mize J, Johal J, Edmiston K, Liotta LA (2010) Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One 5(4):e10240. https://doi.org/10.1371/journal.pone.0010240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Peng YF, Shi YH, Ding ZB, Ke AW, CY G, Hui B, Zhou J, Qiu SJ, Dai Z, Fan J (2013) Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9(12):2056–2068. https://doi.org/10.4161/auto.26398

    Article  PubMed  CAS  Google Scholar 

  43. Peng YF, Shi YH, Shen YH, Ding ZB, Ke AW, Zhou J, Qiu SJ, Fan J (2013) Promoting colonization in metastatic HCC cells by modulation of autophagy. PLoS One 8(9):e74407. https://doi.org/10.1371/journal.pone.0074407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wolf J, Dewi DL, Fredebohm J, Muller-Decker K, Flechtenmacher C, Hoheisel JD, Boettcher M (2013) A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res 15(6):R109. https://doi.org/10.1186/bcr3576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E, Diehl JA, Nagi C, Debnath J, Aguirre-Ghiso JA (2011) PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol Cell Biol 31(17):3616–3629. https://doi.org/10.1128/mcb.05164-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564. https://doi.org/10.1126/science.1203543

    Article  PubMed  CAS  Google Scholar 

  47. Fung C, Lock R, Gao S, Salas E, Debnath J (2008) Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell 19(3):797–806. https://doi.org/10.1091/mbc.E07-10-1092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A, Kano MR, Sugimoto K, Miyazono K (2009) Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res 69(23):8844–8852. https://doi.org/10.1158/0008-5472.can-08-4401

    Article  PubMed  CAS  Google Scholar 

  49. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293. https://doi.org/10.1016/j.molcel.2010.09.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Li J, Yang B, Zhou Q, Wu Y, Shang D, Guo Y, Song Z, Zheng Q, Xiong J (2013) Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 34(6):1343–1351. https://doi.org/10.1093/carcin/bgt063

    Article  PubMed  CAS  Google Scholar 

  51. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292. https://doi.org/10.1016/j.cell.2011.09.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM (2012) Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res 18(2):370–379. https://doi.org/10.1158/1078-0432.ccr-11-1282

    Article  PubMed  CAS  Google Scholar 

  53. Zhao H, Yang M, Zhao J, Wang J, Zhang Y, Zhang Q (2013) High expression of LC3B is associated with progression and poor outcome in triple-negative breast cancer. Med Oncol 30(1):475. https://doi.org/10.1007/s12032-013-0475-1

    Article  PubMed  CAS  Google Scholar 

  54. Kim YH, Baek SH, Kim EK, Ha JM, Jin SY, Lee HS, Ha HK, Song SH, Kim SJ, Shin HK, Yong J, Kim DH, Kim CD, Bae SS (2016) Uncoordinated 51-like kinase 2 signaling pathway regulates epithelial-mesenchymal transition in A549 lung cancer cells. FEBS Lett 590(9):1365–1374. https://doi.org/10.1002/1873-3468.12172

    Article  PubMed  CAS  Google Scholar 

  55. Galavotti S, Bartesaghi S, Faccenda D, Shaked-Rabi M, Sanzone S, McEvoy A, Dinsdale D, Condorelli F, Brandner S, Campanella M, Grose R, Jones C, Salomoni P (2013) The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene 32(6):699–712. https://doi.org/10.1038/onc.2012.111

    Article  PubMed  CAS  Google Scholar 

  56. Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166(1):21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  PubMed  CAS  Google Scholar 

  57. Ghavami S, Sharma P, Yeganeh B, Ojo OO, Jha A, Mutawe MM, Kashani HH, Los MJ, Klonisch T, Unruh H, Halayko AJ (2014) Airway mesenchymal cell death by mevalonate cascade inhibition: integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins. Biochim Biophys Acta 1843(7):1259–1271. https://doi.org/10.1016/j.bbamcr.2014.03.006

    Article  PubMed  CAS  Google Scholar 

  58. Ghavami S, Mutawe MM, Sharma P, Yeganeh B, McNeill KD, Klonisch T, Unruh H, Kashani HH, Schaafsma D, Los M, Halayko AJ (2011) Mevalonate cascade regulation of airway mesenchymal cell autophagy and apoptosis: a dual role for p53. PLoS One 6(1):e16523. https://doi.org/10.1371/journal.pone.0016523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Glogowska A, Stetefeld J, Weber E, Ghavami S, Hoang-Vu C, Klonisch T (2012) Epidermal growth factor cytoplasmic domain affects ErbB protein degradation by the lysosomal and ubiquitin-proteasome pathway in human cancer cells. Neoplasia 14(5):396–409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Schaafsma D, McNeill KD, Mutawe MM, Ghavami S, Unruh H, Jacques E, Laviolette M, Chakir J, Halayko AJ (2011) Simvastatin inhibits TGFbeta1-induced fibronectin in human airway fibroblasts. Respir Res 12:113. https://doi.org/10.1186/1465-9921-12-113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ghavami S, Mutawe MM, Hauff K, Stelmack GL, Schaafsma D, Sharma P, McNeill KD, Hynes TS, Kung SK, Unruh H, Klonisch T, Hatch GM, Los M, Halayko AJ (2010) Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c. Biochim Biophys Acta 1803(4):452–467. https://doi.org/10.1016/j.bbamcr.2009.12.005

    Article  PubMed  CAS  Google Scholar 

  62. Schaafsma D, Dueck G, Ghavami S, Kroeker A, Mutawe MM, Hauff K, FY X, McNeill KD, Unruh H, Hatch GM, Halayko AJ (2011) The mevalonate cascade as a target to suppress extracellular matrix synthesis by human airway smooth muscle. Am J Respir Cell Mol Biol 44(3):394–403. https://doi.org/10.1165/rcmb.2010-0052OC

    Article  PubMed  CAS  Google Scholar 

  63. Long K, Mohan C, Anderl J, Huryn-Selvar K, Liu H, Su K, Santos M, Hsu M, Armstrong L, Ma J (2015) Analysis of autophagosome formation using lentiviral biosensors for live fluorescent cellular imaging. Methods Mol Biol 1219:157–169. https://doi.org/10.1007/978-1-4939-1661-0_12

    Article  PubMed  CAS  Google Scholar 

  64. Yeganeh B, Rezaei Moghadam A, Alizadeh J, Wiechec E, Alavian SM, Hashemi M, Geramizadeh B, Samali A, Bagheri Lankarani K, Post M, Peymani P, Coombs KM, Ghavami S (2015) Hepatitis B and C virus-induced hepatitis: apoptosis, autophagy, and unfolded protein response. World J Gastroenterol 21(47):13225–13239. https://doi.org/10.3748/wjg.v21.i47.13225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ghavami S, Cunnington RH, Gupta S, Yeganeh B, Filomeno KL, Freed DH, Chen S, Klonisch T, Halayko AJ, Ambrose E, Singal R, Dixon IM (2015) Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis 6:e1696. https://doi.org/10.1038/cddis.2015.36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yeganeh B, Ghavami S, Kroeker AL, Mahood TH, Stelmack GL, Klonisch T, Coombs KM, Halayko AJ (2015) Suppression of influenza A virus replication in human lung epithelial cells by noncytotoxic concentrations bafilomycin A1. Am J Physiol Lung Cell Mol Physiol 308(3):L270–L286. https://doi.org/10.1152/ajplung.00011.2014

    Article  PubMed  CAS  Google Scholar 

  67. Gao W, Chen Z, Wang W, Stang MT (2013) E1-Like activating enzyme Atg7 is preferentially sequestered into p62 aggregates via its interaction with LC3-I. PLoS One 8(9):e73229. https://doi.org/10.1371/journal.pone.0073229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Gupta SS, Zeglinski MR, Rattan SG, Landry NM, Ghavami S, Wigle JT, Klonisch T, Halayko AJ, Dixon IM (2016) Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget 7(48):78516–78531. 10.18632/oncotarget.12392

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ghavami S, Knight DA, Halayko AJ (2013) Autophagy is necessary for TGF-β1-induced extracellular matrix expression in idiopathic pulmonary fibrosis lung fibroblasts. Am J Respir Crit Care Med 187:A5165

    Google Scholar 

  70. Klionsky DJ, Abdelmohsen K, Abe A, al e (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shin HS, Ryu ES, ES O, Kang DH (2015) Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells. Lab Invest 95(10):1157–1173. https://doi.org/10.1038/labinvest.2015.91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

SG was supported by Health Science Centre Foundation General Operating Grant and University Collaborative Research Program. SS was supported by Health Science Centre Foundation General Operating Grant and University Collaborative Research Program and Mitacs Accelerate Postdoctoral Fellowship. JA was supported by Research Manitoba studentship award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Ghavami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alizadeh, J., Shojaei, S., Sepanjnia, A., Hashemi, M., Eftekharpour, E., Ghavami, S. (2017). Simultaneous Detection of Autophagy and Epithelial to Mesenchymal Transition in the Non-small Cell Lung Cancer Cells. In: Turksen, K. (eds) Autophagy in Differentiation and Tissue Maintenance. Methods in Molecular Biology, vol 1854. Humana Press, New York, NY. https://doi.org/10.1007/7651_2017_84

Download citation

  • DOI: https://doi.org/10.1007/7651_2017_84

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8747-4

  • Online ISBN: 978-1-4939-8748-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics