Skip to main content

Decellularized Bone Matrix Scaffold for Bone Regeneration

  • Protocol
  • First Online:
Book cover Decellularized Scaffolds and Organogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1577))

Abstract

Decellularized bone matrix is gaining a lot of attention as implantable biomaterials and/or biological scaffolds for bone tissue repair, and shows good clinical performance. This chapter describes the processing techniques and characterization protocols of decellularized bone. For the applications of the decellularized bone scaffold in promoting bone repair and regeneration, we discuss some of the current advances, and highlight the advantages and disadvantages of these scaffolds. Fabrication and application of the hydrogel derived from decellularized bone for bone tissue engineering are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Boskey AL (2013) Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep 2:447

    Article  Google Scholar 

  2. Tapias LF, Ott HC (2014) Decellularized scaffolds as a platform for bioengineered organs. Curr Opin Organ Transplant 19:145–152

    Article  CAS  Google Scholar 

  3. Lee DJ, Diachina S, Lee YT et al (2016) Decellularized bone matrix grafts for calvaria regeneration. J Tissue Eng 7:2041731416680306

    Article  Google Scholar 

  4. Song JJ, Ott HC (2011) Organ engineering based on decellularized matrix scaffolds. Trends Mol Med 17:424–432

    Article  CAS  Google Scholar 

  5. Sun XJ, Peng W, Yang ZL et al (2011) Heparin-chitosan-coated acellular bone matrix enhances perfusion of blood and vascularization in bone tissue engineering scaffolds. Tissue Eng Part A 17:2369–2378

    Article  CAS  Google Scholar 

  6. Chen G, Dong C, Yang L et al (2015) 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl Mater Interfaces 7:15790–15802

    Article  CAS  Google Scholar 

  7. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683

    CAS  Google Scholar 

  8. Butler CR, Hynds RE, Crowley C et al (2017) Vacuum-assisted decellularization: an accelerated protocol to generate tissue-engineered human tracheal scaffolds. Biomaterials 124:95–105

    Article  CAS  Google Scholar 

  9. Hashimoto Y, Funamoto S, Kimura T et al (2011) The effect of decellularized bone/bone marrow produced by high-hydrostatic pressurization on the osteogenic differentiation of mesenchymal stem cells. Biomaterials 32:7060–7067

    Article  CAS  Google Scholar 

  10. Nakamura N, Kimura T, Kishida A (2016) Overview of the development, applications, and future perspectives of decellularized tissues and organs. ACS Biomater Sci Eng. doi:10.1021/acsbiomaterials.6b00506

    Article  Google Scholar 

  11. Funamoto S, Nam K, Kimura T et al (2010) The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31:3590–3595

    Article  CAS  Google Scholar 

  12. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243

    Article  CAS  Google Scholar 

  13. Costa A, Naranjo JD, Londono R et al (2017) Biologic scaffolds. Cold Spring Harb Perspect Med. pii:a025676

    Article  Google Scholar 

  14. Shahabipour F, Mahdavi-Shahri N, Matin MM et al (2013) Scaffolds derived from cancellous bovine bone support mesenchymal stem cells' maintenance and growth. In Vitro Cell Dev Biol Anim 49:440–448

    Article  CAS  Google Scholar 

  15. Frohlich M, Grayson WL, Marolt D et al (2010) Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture. Tissue Eng Part A 16:179–189

    Article  Google Scholar 

  16. Grayson WL, Bhumiratana S, Cannizzaro C et al (2008) Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone. Tissue Eng Part A 14:1809–1820

    Article  CAS  Google Scholar 

  17. Marolt D, Campos IM, Bhumiratana S et al (2012) Engineering bone tissue from human embryonic stem cells. Proc Natl Acad Sci U S A 109:8705–8709

    Article  CAS  Google Scholar 

  18. de Peppo GM, Marcos-Campos I, Kahler DJ et al (2013) Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 110:8680–8685

    Article  Google Scholar 

  19. Chen Q, Yang Z, Sun S et al (2010) Adipose-derived stem cells modified genetically in vivo promote reconstruction of bone defects. Cytotherapy 12:831–840

    Article  CAS  Google Scholar 

  20. Marcos-Campos I, Marolt D, Petridis P et al (2012) Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials 33:8329–8342

    Article  CAS  Google Scholar 

  21. Chen G, Yang L, Lv Y (2016) Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model. J Biomed Mater Res A 104:833–841

    Article  CAS  Google Scholar 

  22. Chen G, Lv Y (2017) Matrix elasticity-modified scaffold loaded with SDF-1α improves the in situ regeneration of segmental bone defect in rabbit radius. Sci Rep 7:1672

    Article  Google Scholar 

  23. Du D, Asaoka T, Ushida T et al (2014) Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography. Biofabrication 6:045002

    Article  Google Scholar 

  24. Grayson WL, Marolt D, Bhumiratana S et al (2011) Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Biotechnol Bioeng 108:1159–1170

    Article  CAS  Google Scholar 

  25. Li D, Tang T, Lu J et al (2009) Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tissue Eng Part A 15:2773–2783

    Article  CAS  Google Scholar 

  26. Yu X, Botchwey EA, Levine EM et al (2004) Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci U S A 101:11203–11208

    Article  CAS  Google Scholar 

  27. Kim J, Ma T (2012) Perfusion regulation of hMSC microenvironment and osteogenic differentiation in 3D scaffold. Biotechnol Bioeng 109:252–261

    Article  CAS  Google Scholar 

  28. Chen G, Xu R, Zhang C et al (2017) Responses of MSCs to 3D scaffold matrix mechanical properties under oscillatory perfusion culture. ACS Appl Mater Interfaces 9:1207–1218

    Article  CAS  Google Scholar 

  29. Bhumiratana S, Bernhard JC, Alfi DM et al (2016) Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med 8:343ra83

    Article  Google Scholar 

  30. Markel DC, Guthrie ST, Wu B et al (2012) Characterization of the inflammatory response to four commercial bone graft substitutes using a murine biocompatibility model. J Inflamm Res 5:13–18

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sawkins MJ, Bowen W, Dhadda P et al (2013) Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 9:7865–7873

    Article  CAS  Google Scholar 

  32. Paduano F, Marrelli M, White LJ et al (2016) Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS One 11:e0148225

    Article  Google Scholar 

  33. Paduano F, Marrelli M, Alom N et al (2017) Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J Biomater Sci Polym Ed 28:730–748

    Article  CAS  Google Scholar 

  34. Smith EL, Kanczler JM, Gothard D et al (2014) Evaluation of skeletal tissue repair, part 1: assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model. Acta Biomater 10:4186–4196

    Article  CAS  Google Scholar 

  35. Smith EL, Kanczler JM, Gothard D et al (2014) Evaluation of skeletal tissue repair, part 2: enhancement of skeletal tissue repair through dual-growth-factor-releasing hydrogels within an ex vivo chick femur defect model. Acta Biomater 10:4197–4205

    Article  CAS  Google Scholar 

  36. Gothard D, Smith EL, Kanczler JM et al (2015) In vivo assessment of bone regeneration in alginate/bone ECM hydrogels with incorporated skeletal stem cells and single growth factors. PLoS One 10:e0145080

    Article  Google Scholar 

  37. Alom N, Peto H, Kirkham GR et al (2017) Bone extracellular matrix hydrogel enhances osteogenic differentiation of C2C12 myoblasts and mouse primary calvarial cells. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33894

    Article  Google Scholar 

  38. Hung BP, Naved BA, Nyberg EL et al (2016) Three-dimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater Sci Eng 2:1806–1816

    Article  CAS  Google Scholar 

  39. Nyberg E, Rindone A, Dorafshar A et al (2017) Comparison of 3D-printed poly-ε-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix. Tissue Eng Part A. doi:10.1089/ten.TEA.2016.0418

    Article  CAS  Google Scholar 

  40. Agmon G, Christman KL (2016) Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci 20:193–201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Natural Science Foundation of China (11672051), the China Postdoctoral Science Foundation (2015M582521), and the Fundamental Research Funds for the Central Universities (106112017CDJQJ468823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Lv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chen, G., Lv, Y. (2017). Decellularized Bone Matrix Scaffold for Bone Regeneration. In: Turksen, K. (eds) Decellularized Scaffolds and Organogenesis. Methods in Molecular Biology, vol 1577. Humana Press, New York, NY. https://doi.org/10.1007/7651_2017_50

Download citation

  • DOI: https://doi.org/10.1007/7651_2017_50

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7655-3

  • Online ISBN: 978-1-4939-7656-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics