Skip to main content

Monitoring of Iron Depletion-Induced Mitophagy in Pathogenic Yeast

  • Protocol
  • First Online:
Mitophagy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1759))

Abstract

Mitophagy, which is the degradation of mitochondria via selective autophagic machinery, is thought to be involved in regulating the mass and function of mitochondria. Methods for detection of mitophagy have been reported for several fungal cells including some budding yeast, methylotrophic yeast, and filamentous fungi. Mitophagy in Saccharomyces cerevisiae is activated under nitrogen-poor conditions; however, the regulatory mechanism of mitophagy in most fungi has not been elucidated. Here we describe methods to monitor mitophagy in the pathogenic yeast Candida glabrata under iron-depleted conditions but not under nitrogen starvation. This observation may provide some clues to elucidate the physiological roles of mitophagy in eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

DHFR:

Dihydrofolate reductase

ECL:

Enhanced chemiluminescence

GFP:

Green fluorescent protein

OD:

Optical density

PMSF:

Phenylmethane sulfonyl fluoride

ROS:

Reactive oxygen species

SD:

Synthetic glucose medium

TTBS:

Tris-buffered saline containing Tween 20

WT:

Wild-type

YPD:

Yeast extract peptone dextrose

References

  1. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kurihara Y, Kanki T, Aoki Y, Hirota Y, Saigusa T, Uchiumi T, Kang D (2012) Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem 287:3265–3272

    Article  CAS  PubMed  Google Scholar 

  3. Narendra DP, Jin SM, Tanaka A, Suen D-F, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Narendra D, Tanaka A, Suen D-F, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17:87–97

    Article  PubMed  Google Scholar 

  7. Aihara M, Jin X, Kurihara Y, Yoshida Y, Matsushima Y, Oku M et al (2014) Tor and the Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast. J Cell Sci 127:3184–3196

    Article  CAS  PubMed  Google Scholar 

  8. He Y, Deng YZ, Naqvi NI (2013) Atg24-assisted mitophagy in the foot cells is necessary for proper asexual differentiation in Magnaporthe oryzae. Autophagy 9:1818–1827

    Article  CAS  PubMed  Google Scholar 

  9. Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA, Du Z et al (2009) A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell 20:4730–4738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ueno K, Uno J, Nakayama H, Sasamoto K, Mikami Y, Chibana H (2007) Development of a highly efficient gene targeting system induced by transient repression of YKU80 expression in Candida glabrata. Eukaryot Cell 6:1239–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagi M, Tanabe K, Nakayama H, Ueno K, Yamagoe S, Umeyama T, Ohno H, Miyazaki Y (2016) Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata. Autophagy 12:1259–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanki T, Kang D, Klionsky DJ (2009) Monitoring mitophagy in yeast: the Om45-GFP processing assay. Autophagy 5:1186–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank Koji and Noriko Okamoto (Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan) for providing yeast strains and plasmids. This research was supported by JSPS KAKENHI Grant Numbers 26790428 (KT), 24590540 (HN), and 26860296 (MN). This work was partly supported by a grant from the Ministry of Health, Labour and Welfare of Japan (H26-shinkoujitsuyouka-ippan-010). The authors would like to thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Tanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tanabe, K., Nagi, M. (2017). Monitoring of Iron Depletion-Induced Mitophagy in Pathogenic Yeast. In: Hattori, N., Saiki, S. (eds) Mitophagy. Methods in Molecular Biology, vol 1759. Humana Press, New York, NY. https://doi.org/10.1007/7651_2017_40

Download citation

  • DOI: https://doi.org/10.1007/7651_2017_40

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7749-9

  • Online ISBN: 978-1-4939-7750-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics